Radio-Electron'CS

FOR MEN WITH IDEAS IN ELECTRONICS

COMMUNICATIONS 1974 - CB equipment roundup - modem receiver circtits - CB radio alignment -new CB designs

LEN FELDMAN EXAMINES NEW HI-FI CRECUIS

CHECK
 ELECTRONIC FLASH BUILD A BLITZMETER

4.WDYMFIS

Stocking only 49 ECG ${ }^{\text {"w }}$ semiconductors is like having thousands of audio transistors on hand.

Manufacturers of TV, radio and stereo systems have audio transistor replacements listed under thousands of different part numbers.

But, thanks to the Sylvania ECG semiconductor replacement guide, you can replace practically all of them with just 49 different transistors.

And that can save a lot of hunting and stocking, especially when you're a busy service dealer.

For example, if you need a low-noise, high-gain NPNsilicon transistor for an audio preamp, check out our ECG199. It fits a lot of sockets. 。

And if import parts are bugging you, our ECG-158, 176,226 and 226 MP are direct replacements for parts like the 2SB405, 2SB474 and 2SB492 plus a lot of others you'll find in our guide.

But, our cross-reference guide (ECG-212E) lists a lot more than just audio transistors. It lists over 75,000 parts that can be replaced with a minimum number of Sylvania ECG parts.

For you, it means one source for practically all your replacement needs, including industrial components.

What more could anyone ask for?

A SPECIAL OFFER FROM MITS

Purchase a MITS 941M or a MITS 908M - and for an additional \$20, receive a 605M.

Soon the world will be calculated by the metric system

The MTS 941M handheld

calculator converts to metric
instantly - accurately electronically

41 FUNCTIONS:

- ARITHMETIC $+-x \div \%$

■ METRIC

- 8 LENGTH
$\square 8$ VOLUME
-8 AREA
- 2 TEMPERATURE
- 6 LIOUID
- 4 MASS

FULL OPERATION MEMORY.

- Chain calculation
- Full floating decimal
- Leading and trailing zero suppression
- True credit balance
- Algebraic entry system
- 8 digit read out

INDICATORS Sign

- Low battery • Overilow
- Math error

941M PRICES* Assembled
Kit
\$149.95
\$129.95
SIZE $146.05 \mathrm{~mm} \times 82.55 \mathrm{~mm} \times 3810 \mathrm{~mm}$ $\left(5-3 / 4^{\prime \prime} \times 3-1 / 4^{\prime \prime} \times 1-1 / 2^{\prime \prime}\right)$

The MITS 605M handheld calculator / 6-digit readout / 5 functions (addition, subtraction, multiplication, division, and percentages).
MEMORY: • Stores intermediate results

- Stores a constant
- Accumulates results

Fixed or Floating Decimal... and much more
The MITS 905M handheld calculator
(same features as 605 M , plus an 8 -digit readout).
Size of Both: $5-3 / 4^{\prime \prime} \times 31 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$
Kit Assembled
Prices: 605M \$49.95 \$59.95 905M \$59.95 \$69.95
*Prices subject to change without notice

The MITS 908M handheld

calculator offers 8 functions (addition. subtraction. multiplication, division, square root, square. percentage, and reciprocal) and a handful of features

MEMORY can be used as:

- a constant
- a temporary storage
- register
- an accumulator

Fixed and floating
decimal (operators choice)

- Chain and mixed operations
- 8 digit readout bright LED display
- 100\% American made
- Algebraic entry system

Special Readouts

- Negative result • Entry overflow • result overflow - low battery \cdot Math error

SIZE $5-3 / 4^{\prime \prime} \times 3-1 / 4^{\prime \prime} \times 1-1 / 2^{\prime}$
908M PRICES* Assembled
\$129.95
Kit
*Prices subject to change without notice.

ACCESSORIES

AC adapter for 117 VAC operation \$6.95
Carrying case (leatherette)
$\$ 5.95$

WARRANTY

Full two-year warranty on assembled models. including parts and labor: on kit models: ninetyday warranty on parts.

- Available from your local
 Olson Electronics Dealer.

6328 Linn, N. E., Albuquerque, New Mexico 87108 505/265-7553 Telex Number 660401

 Mirro Instrumentation \& Telemetry Systems, Inc.
 IIIT5

modular sound control center I.* Mix.shape. add reverb for $\$ 223$.

Shure supplies the ingenuity and the components - but you take the credit for one of the most clever, most economical sound reinforcement "consoles" ever devised! Here's how: Install a Shure M68RM mixer, stacked with a Shure M63 Audio Master. The M68RM handles the input of up to four microphones, accepts a separate high level signal (such as a tape recorder or tuner signal), and has variableintensity reverberation capability. The ingenious M63 gives you high and low frequency filters with separate bass and treble controls, so output signals can be tuned to a wide variety of response characteristics to suit program material to room acoustics-providing low-cost room/system equalization and better feedback control. It delivers precisely the audio control needed-no more, no less. And it's expandable for future needs. Great idea, great components, great price!
*More to come. . . other ingenious sound control centers will be discussed.
Shure Brothers Inc.
222 Hartrey Ave., Evanston, Illinois 60204
In Canada: A. C. Simmonds \& Sons Lid.

COMMUNICATIONS

24

What's available in transceivers and accessories now. by Herb Friedman

33 Modern Receiver Circuits
Take a look at the modern communications superhet. It's an eye-opener. by Raymond S. Moore

36 New CB Circuits
Frequency synthesis, channel 9 monitor, SSB noise eliminators and agc circuits are examined.
by Robert F. Scott
44 CB Alignment
Use another CB rig as your alignment equipment. by Andrew Mueller

40 New Stereo Circuits
Improved two-channel multiplex decoding and directdrive turntables by Len Feldman

TELEVISION
22 Equipment Report
Hewlett-Packard 970A multimeter probe
60 Step-By-Step Troubleshooting
Power supplies in the solid-state receiver. by Stan Prentiss
62 R-E's Replacement Transistor Guide
2N2402 to 2N2619. by Robert \& Elizabeth Scoft
65 Service Clinic
OTL vertical sweep. by Jack Darr
72 Reader Questions
R-E's Service Editor solves reader problems.

BU\|LD $50 \quad$ Blitzmeter For Electronic Flash

Electronic meter measures the output of your strobe. by James Gupton

GENERAL ELECTRONICS

4 Looking Ahead
Tomorrow's news today. by David Lachenbruch
14 Appliance Clinic
Solid-state ignition for lawn mowers. by Jack Darr
53 Technical Topics
Two new pieces of test equipment, a regenerative detector and a random-order flasher are described.
by Robert F. Scott

DEPARTMENTS

16 Letters

6 New \& Timely
81 New Literature

ON THE COVER

It's a cinch to take resistance readings with Hewlett-Packard's new digital multimeter. Here we are probing inside a Lafayette model 625 CB transceiver. For a full report on this unit turn to page 22.

NEW CB EQUIPMENT is full of the latest clicuit features. Learn what they are and how they work.
... see page 36
Hugo Gernsback (1884-1967)
founder
M. Harvey Gernsback, editor-in-chief
and publisher
Larry Steckler, CET, editor
Robert F. Scott, W2PWG CET, technical editor
Jack Darr, CET, service editor
I. Queen, editorial assoclate
Leonard Feldman, contributing high-fidelity
editor
David Lachenbruch, contributing editor
Barbara Schwartz, editorial assistant
Vincent P. Cicenia, production manager
Sarah Martin, production assistant
Harriet I. Matysko, circulation director
Arline R. Fishman, advertising coordinator

Radio-Electronics is indexed in Applied Science \& Technology Index. and Readers Guide to Periodical Literature.

Radio-Electronics, January 1974, Vol. 45, No. 1. Published monthly by Gernsback Publications. Inc., 200 Park Avenue South. New York City 10003. Second-class postage paid at New York, N.Y. and additional mailing office. One-year subscription rate: U.S.A. U.S. possesslons and Canada. \$7. Pan-American countries, \$8 Uther countres. $\$ 8.50$. Single copies 60c. © 1973 by Gernsback Publications. Inc. All rights reserved. Printed in U.S.A.
Subscriptio I Service: Mail all subscriptlon orders, changes. correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Boulder, Colo. 80302.

A stamped self-addressed envelope must accompany al submitted manuscripts and/or artwork or photographs it their relurn is desired should they be rejected. We dis claim any responsibility for the loss or damage of manuscripts andlor artwork or photographs while in our possession or otherwise

looking ahead

Compatible videodisc?

Cannes, France - This month Telefunken begins marketing the world's first home videodisc system, as reported in this column in December. Telefunken's is a mechanical system, a "pressure stylus" reading out hill-anddale impressions embossed on a flexible disc revolving at 1,500 rpm (for European color TV standards).

Several other firms-notably Philips of Holland and MCA Disco-Vision of Universal City, Calif.-have offered all-electronic approaches to videodiscs, using low-cost lasers to read out "pits" in a reflective disc. Although neither the Philips nor the MCA system is due on the market before mid-1975, their imminence has raised a question of standardization of home TV disc techniques
Now along comes a major French firm which claims it has a laser-beam opto-electronic videodisc system which can play back its own discs and the Telefunken discs, and potentially any other disc which spins at a rate synchronous with the TV frame rate (1.500 rpm in Europe, 1,800 for the American and Japanese TV systems).
At the VIDCA videocas-sette-videodisc conference here, Thomson-CSF announced (but didn't demonstrate) the development of this compatible system, designed to retail at a price rivalling the Telefunken system's $\$ 450$, and claimed it would play back 20 to 25 -minute LP discs as well as Telefunken's 10 -minute records

The Thomson-CSF disc, as already reported here, is transparent, rather than reflective. A low-powered laser is beamed through the disc, and tiny "pits" in the flexible disc's surface refract the light. The refracted light is then trans-
lated into video and audio signals. The Thomson disc, like the Telefunken version, floats on an "air cushion," and Thomson engineers claim that this air-bearing effect makes unnecessary elaborate servo systems to keep the laser beam focused exactly on the pits pressed into the disc
Thomson claims that its system can play back a Telefunken pressure-type disc, if the latter is pressed on transparent plastic. The laser beam is said to be able to read the hill-and-dale impressions on the Telefunken disc system as well as the pits on Thomson's own discs. Thomson officials also said they are working on techniques to play back Philips discs with their equipment. As are Philips, MCA and Telefunken, Thomson is currently wooing manufacturers in the United States, Japan and Europe.

One for the road

A unique highway radio system is now being phased into operation in Germany through the cooperation of the federal government, the state-oper. ated radio systems and car radio manufacturers. The system, whose development is credited to Blaupunkt (Robert Bosch Co.), is designed to keep motorists fully informed of highway conditions, detours, traffic jams, etc. at all times, with a minimum effort on the part of the driver

The system is being introduced in three phases, and depends on interaction between the broadcasting station and the car radio. Phase 1 is currently in operation: A regular FM station transmits highway information supplied by the police, auto clubs and other sources, along with its regular programming. In addition, it transmits a $57-\mathrm{kHz}$ pilot signal. In Germany, 80\% to 90% of auto radios have FM and all car radios built in the
last five years contain tape jacks. Radio manufacturers are offering (at about \$20) an adaptor which plugs into the tape jack
A light on the adaptor, activated by the pilot signal, indicates when the highway information is on the air. A special pushbutton mutes all stations not carrying the road information, so that the information channel may be easily found. A second version, for signal-seeking radios, automatically tunes to the highway station when the pushbutton is pressed.

All of West Germany eventually will be divided into seven sectors for highway information. Phase 2 of the program, currently being tested, permits the motorist to select the highway-information station from a neighboring sector, to get a preview of road conditions ahead, or to determine whether to move to the adjoining sector for better driving
Phase 3 is aimed at people who don't like to drive with music. It will permit the motorist to tune to the highway information station, push a button and enjoy silence-muting all programming except road condition bulletins.

Satellite broadcasting

New Delhi, India-India is currently preparing for the first regular system of direct satel-lite-to-TV-set broadcasting. Scheduled to start in June 1975, the system will be designed to bring educational broadcasts to remote villages which can't be reached by conventional TV. The satellite. to be launched by NASA, will first be tested over the Rocky Mountain states, then moved to a synchronous position over India. An Indian governmentcontrolled factory is already preparing to manufacture ruggedized solid-state receivers designed to be powered by 12 -volt storage batteries-
since many of the villages have no electricity. Each receiver will be fitted with a special front-end adaptor tuned to the satellite's frequency and a portable parabolic antenna. The receiver-antenna system will cost less than $\$ 400$ to produce.

The receiver installations will be located in school and other public places, to carry school, agricultural and public health information. Although the test satellite will be stationed above India for only one year, the Indian government already has plans to build its own synchronous satellite for 1976 launching by "'a friendly country." to continue the program.

Super-8 TV

Another delay in do-ityourself video: Eastman Kodak's introduction of a super-8 vision-and-sound cartridge film attachment for home color sets has been postponed until spring. Initially, it was to have been introduced at the end of 1973. The Kodak unit is only one of three systems which permit hobbyists-or professionals -to display their super-8 films on conventional TV screens. The first to reach the market is being built in Japan by Fuji Film. In Germany, television manufacturer NordMende is aiming at marketing next May of its own system. None of the systems are compatible because they use different types of super-8 film cartridges-a Kodak cartridge for the Kodak unit, Fairchild cartridge for NordMende, special Fuji cartridge for Fuji's unit (although an adapter permits the showing of open-reel super-8 on the latter). All three systems are designed to accommodate film made with magnetic soundtracks.

by DAVID LACHENBRUCH CONTRIBUTING EDITOR

 sidf
 ALL PARTS
 INCLUDED
 except tubes and iransistors
 ONE YEAR GUARANTEE

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

REPAIR

VHF Or UHF Any Type $\$ 9.95$ UHF /VHF Combo \$15.00.

In this price all parts are included Tubes, transistors, diodes, and nuvistors are charged extra

Fast efficient service at our conve niently located service centers. This price does not cover mutilated tuners

All tuners are cleaned ultrasonically. repaired, realigned and air tested.

REPLACE

Universal Replacement Tuner $\$ 9.95$
This price buys you a complete new tuner built specifically by SARKES TAR. ZIAN INC. for this purpose.

All shafts have a maximum length of $10^{\prime \prime}$ which can be cut to $11 / 2^{\prime \prime}$

Specify heater type parallel and series 450 mA or 600 mA .

CUSTOMIZE

Customized tuners are available at a cost of only $\$ 15.95$. (With trade in $\$ 13.95$)

Send in your original tuner for comparison purposes to:

TUNER SERVICE CORPORATION

FACTORY-SUPERVISED TUNER SERVICE

WATCH US GROW

Backed by the largest tuner manufacturer in the U.S.-SARKES TARZIAN, Inc.

new extimely

New pacemaker battery will run for 10 years

A new chemical (sodium-bromine) cell with an estimated life five times that of the mercury-zinc batteries now used in pacemakers is now undergoing tests in General Electric's Medical Systems Business Division, Milwaukee. The new battery is only half the size and quarter the weight of the mercury-zinc cells now used, and its voltage (3.6) is nearly three times that of the mercury cell. It can store 170 watt-hours of energy per pound, or 15 watt-hours per cubic inch, as compared to the mercury-zinc's 50 watt-hours per pound, or 8 watt-hours per cubic inch.

NEW BATTERY WILL LAST TEN YEARS. Designed for use as an implanted battery for pacemakers (devices that keep the heart beating in correct time) it will last five times as long as conventional pacemaker batteries, which have to be replaced by surgery every two years.

The new discovery established the chemical cell as the ultimate answer to the problem of powering pacemakers, believes Dr. Arthur Bueche, GE's vice president for research, and as superior to nuclear power sources or other proposed means of powering the devices. "The new long-life electrochemical power source," he pointed out, "would completely eliminate any hazard with the radioactivity of nuclear batteries and would greatly extend the intervals between replacement surgery for users of chemically powered pacemakers. " In addition, the price of pacemakers powered with the new battery is expected to be a fraction of the cost of nuclear pacemakers (now estimated to be about $\$ 4,800$)

The cell has a bromine cathode, a sodium-amalgam anode and a beta alumina ceramic electrolyte. Sodium ions travel through the ceramic electrolyte and react with the bromine, forming sodium bromide salt. The ceramic electrolyte prevents contact between reactive materials, eliminating the self-discharge and cell shorting that reduces the life of batteries that have a liquid electrolyte. Shelf
life is virtually unlimited. Size of the unit is $11 / 4$ inches in diameter by $3 / 8$ inch high. It weighs about one ounce.

Avery Fisher gives $\$ 8$-million to

 Philharmonic HallHigh-fidelity enthusiast and manufaciurer Avery Fisher has made a donation estimated to be between $\$ 8$ and $\$ 10$ million to Philharmonic Hall of New York's Lincoln Center for the Performing Arts. Philharmonic Hall was immediately renamed Avery Fisher Hall.

Unlike many such large donations, which are often tagged for new buildings or ambitious projects, eighty per cent of the donation will be used for the running expenses of Philharmonic Hall, which up to the present have exceeded receipts by about half a million dollars a year. Twenty per cent of the grant will be devoted to a fellowship program designed to encourage and develop the careers of young American instrumentalists

Mr . Fisher, himself an amateur violinist and a professional and amateur book designer and typographer, started his highfidelity business in 1937. after a period of home construction of high-quality audio equipment for friends. Interestingly, the new venture was at first called Philharmonic Radio. Later, the name Fisher was adopted and became synonymous to knowledgeable audiophiles with the best in audio equipment.
In 1971, Mr. Fisher sold his Fisher Radio Co. to the Emerson Electric Co. of St. Louis for about $\$ 30$ million. "From that point on," he says, "I began to think about what I would want to do with such assets, far beyond the needs of myself and my family." Realizing that he "owed it all to live music and live musicians," he decided on the gift, which some believe to be the largest ever made in the United States "for direct operation of a theater. rather than tor bricks and mortar.

Four winners of the 1973
 Gernsback Scholarship Award

Grantham School of Engineering has selected Carl C. Dick for the 1973 Hugo Gernsback Award which is given annually

to an outstanding student in each of nine electronics home-study schools

Mr. Dick's first contact with electronics was through the RCA Tube Manual in 1950. Reading the principles of radio there sparked his interest in electronics. In 1957, he opened his own parts-sales and service business. Today, he is the sole in-warranty service dealer of RCA and Zenith in the Republic of Panama, besides accepting work on any make or type of electronic equipment.
In addition to all this, he finds time to study the Grantham course, direct the choir at church and enjoys his hobby of deep-sea fishing

NRI's candidate for the 1973 Hugo Gernsback Scholarship Award, a $\$ 125$ grant, is Hennen J. Blanton. Leavenworth. Kan.
Blanton's case tends to be unique, in that he is an inmate in a penal institution. Born in 1933 in Pittsburgh. Pa., he lost

both parents at an early age, and led a somewhat nomadic existence. First involvement with the law was at age 11.

Previous to his present incarceration, he was variously employed as a vacuum cleaner technician, motor rewinder, maintenance electrician and computer operator. He became interested in education while in prison, completed his G.E.D. tests and received a high school equivalency diploma. He registered for NRI training because, as he says, "I have had a number of jobs and almost all of them required more knowledge than I had. I want to get training in various fields so that I will have more to offer than an untrained or partially trained person.

He worked in Federal Prisons Industries to obtain money to finance his studies. At present enrolled in the Electronics Technology course, he plans to enroll in an additional NRI course as soon as he completes the present one. The Gernsback Award, he says, will definitely benefit him in the pursuit of his goals, and he hopes that his newly acquired skills will enable him to "make it" on his release in 1977 or on parole in 1974. (continued on page 12)

fre Olson catalog

YOUR COMPLETE ELECTRONICS BUYING GUIDE for home or business . . . over 8,000 quality-tested items clearly described and illustrated on big $81 / 4 \times 103 / 4^{\prime \prime}$ pages. Shop leisurely in the comfort of your own home order what you want by mail or through the catalog order station at your nearby Olson store. Any way you do it - you pay the same low Olson catalog price!

FEATURING THE BEST OF THE NAME BRANDS PLUS EXCLUSIVE TELEDYNE AND OLSON PRODUCTS

- Stereo and 4-Channel Sound Systems - Tape Recording Equipment - Car Stereo and Accessories • Easy-toBuild Electronic Kits - Citizens Band Redios - Police Receivers - Books - Amateur Radio Equipment Antennas - Radios - PA - Test Equipment - Electronic Security Systems - Electronic Calculators and Timepieces - PLUS 1000's of PARTS, TUBES, BATTERIES, HARDWARE!

SAVE ON "THE ELECTRONICS IN YOUR LIFE"
 - Buy with Confidence

NOW you can train at home building a NEW 25 "nomeonh Solid State Color TV engineered by NRI for learning and trouble-shooting
 Handsome woodgrain cabinet, at no extra cost. (Offered only by NRI)

NRI FIRSTS make learning Electronics fast and fascinating-to give you priceless confidence

F\|RST to give you a complete progranmable digital computer, with memory, you build yourself ... to learn organization, operation, trouble-shooting and programming. This remarkable computer is one of ten training kits you receive with the new NRI Complete Computer Electronics Course.

F\|RST to give you true-to-life experiences as a Conmmunications Technician. Fivery fascinating step you take in NRI Communications training, including circuit analysis of your own 15 -watt. phone/cw transmitter, is engineered to help you prove theory and later apply it on the job. Studio equipment operation and trouble shooting become a matter of easily remembered logic.

FIRST to give you completely specialized training kits engineered for business, industrial and military Electronics Technology. Shown is your own training center in solid-state motor control and analog computer servo-mechanisms. Telemetering circuits. solid-state multivibrators and the latest types of integrated circuits are included in your course.

The NRI color TV and digital computer kits are the latest in a long line of "firsts" for NRI. For more than fifty years, NRI has been providing unique 3dimensional home-study training that has helped hundreds of thousands of students reach their goals quickly and easily.

What NRI provides is a combination of kits and bite-size texts that give you hands-on experience while you are learning. The texts average only 40 pages each, and they are fully illustrated. You are taken step-by-step from the first stages into the more advanced theory and techniques . . . with an expert instructor ready at all times to provide valuable guidance and personal attention. (The level of personal attention provided is more than you would receive in many classrooms.) Once you've grasped the fundamentals, you move with confidence and enthusiasm into new discoveries in the fascinating world of electronics.

You start out with NRI's exclusive Achievement Kit, containing everything you need to get moving fast. Lessons have been specifically written so that experiments build upon one another like stepping stones. You can perform a hundred experiments, build hundreds of circuits . . . as you learn to use the professional test equipment provided, building radios and TV sets, transmitter or computer circuits. It's the priceless "third dimension" in NRI training . . . practical experience.

Train with the leader-NRI

Compare training kits, texts, techniques and overall training . . and you'll find that you get more for your money from NRI. Whatever your reason for wanting more knowledge of Electronics, NRI has an instruction plan that will meet your needs. Choose from major programs in Advanced Color TV Servicing, Complete Computer Electronics, Industrial Electronics and the other special courses designed to meet specific needs. With NRI home training, you can learn new skills while you're still working at your present job . . . and turn yourself into the man in demand.

GET FACTS ABOUT GI BILL

If you have served since January 31, 1955, or are in service now, check GI line on postage-free card

Send for free NRI catalog

MAIL THE POSTAGE-FREE CARD FOR THE FREE NRI CATALOG IN THE FIELD OF YOUR CHOICE. YOU WILL BE UNDER NO OBLIGATION. NO SALESMAN WILL CALL.
If the card has been used, write direct to:

NRI TRAINING
3939 Wisconsin Ave.
Washington, D.C. 20016
Circle 5 on reader semive card

The winner from CREI is Fred Reynolds, Jr., now with the U.S. Navy
He received his CREI diploma, and is now continuing with a course in Complete Communications, preparatory to sitting for his First Class Radio Telephone license examination. He has also been attending-under Navy orders-the Satel-

lite Communications School in Washington, DC , during the winter

Vincent Lozupone, Brooklyn, NY, who has just completed the International Correspondence Schools Television Service Technician program, under the GI Bill,
was unemployed when he enrolled in the course in March, 1972. He is one of the 1973 winners of the Hugo Gernsback Scholarship awards. He writes: "I'm 23

years old, and now working for TelePrompter, the largest cable corporation in the nation, as a CATV installer. Graduating from high school with no special interests, I worked as a clerk for two years. Then I was drafted. In the Army I became a radio teletype operator.
When I was discharged I decided to go to school for radio and TV repair. I took the ICS course

Radlo-Electronlcs is published by Gernsback Publications, Inc. 200 Park Ave. S New York, N.Y. 10003 (212) 777-6400 President: M. Harvey Gernsback Secretary: Bertina Baer

ADVERTISING SALES

EAST
Stanley Levitan, Eastern Sales Mgr. Radio-Electronics
200 Park Ave. South
New York, N.Y. 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph J. Bergen
The Ralph J. Bergen Co
6319 N. Central Ave
Chicago, III. 60646
(312) 792-3646

PACIFIC COAST/Mountain States
Jay Eisenberg
J.E. Publishers Representative Co.

8732 Sunset Blvd., 4 th Floor
Los Angeles, Calif. 90069
(213) 659-3810

420 Market St.,
San Francisco Calif. 94111
(415) 981-4527

SOUTHEAST

E. Lucian Neff Associates

25 Castle Harbor Isle.
Fort Lauderdale, Florida 33308
(305) 566-5656

Protect your valuables \& lovables ... with the Archer Photoelectric Warning System

Guards any entranceway or area with a beam of light. Use it as an intruder alarm or to announce visitors. Sounds an accessory siren or bell either of two ways: (1) Continuously, once the beam is broken or (2) Only during the time the beam is

and this Archerkit Disaster Alarm System

Protects your home \& family from gas \& smoke-electronically Build yourself a really safe home! Assemble this kit tonight and rest assured that you're protected fror unseen gas leaks, auto exhaust and smoke from impending fires. Loud buzzer sounds if semiconducto detects as little as 500 PPM of carbon monoxide or $2-4 \%$ smoke. Sensitivity control. Keyhole slots for wall mounting. Easy one-evening assembly. AC powered. \#28-4006.
interrupted. Easy setup - just aim the light beam at the "eye" of the receiver. Sensitivity control adjusts for various ambient light levels. AC powered for economical continuous operation. Assembled and ready to use. \#275-489.

We re near you, wherever you are-see your phone book.

Are you ready for a REAL

CONTROL CENTER?

If you're a music lover looking for more enjoyment from your music collec tıon, we have a pleasant surprise for you.

Up to now you've empoyed the few control functions on your tape deck. amp or receiver. But think what you could do with a discrete control center! Not a $10 . f_{1}$ economy model, but the famous CROWN IC150, with a variety of versatile controls unavailable in any other model under $\$ 300$. and some models over $\$ 500$

This is the control center praised by that dean of audıo. Ed Canby: "This ICl50 . . is the finest and most versatıle control unit I have ever used. For the first time I can hook all my equipment together at once. I find many semi-pro operations possible with it that I have never before been able to pull off, including a firstclass equalization of old tapes via the smooth and distortionless tone controls. I have rescued some of my earliest broad. cast tapes by this means, recopying them to sound better than they ever did before.

The ICl50 will do the same for you You could record from any of seven sources: tuners, turntables. guitars. tape players, microphones, etc. You could also tape with one recorder while listening to a second one. Even run two copies of the same source at once while mon itoring each individually. How about using the ICl50's exclusive panorama control to improve the stereo separation of poorly produced program material or to correct that ping-pong effect with headphone lis. tening? It's all up to your creativity

You'll feel perfectly free to copy and recopy through your IC150, since it creates practically no deterioration whatsoever. Cleaner phono and high-level circuits cannot be found anywhere. Harmonic distortion is practically unmeas. urable and IM is less than 0.01% (typically 0.002\%).

Of course, construction is tradi. tional Crown quality, backed with a threeyear warranty. The price is $\$ 299$. The enjoyment is unlimited. The opportunity is yours. Visit your local Crown dealer to discover if you are ready for a real control center, the IC150

BOX 1000. ELKHART, INDIANA 46514
Cirile 7 on reader bervice rard

SOLID-STATE IGNITIONNEW FOR LAWNMOWERS

by JACK DARR

SERVICE EDITOR
 now-éven the lawnmower! This also inclades snow mobiles. small giarden tractors. and outhoard motors -anything pouced by small gatoline engines. For at typical example. herés the system used in the latan-Boy mowers, in their 197.3 line. It is actually a capacitor-dischatge ignition $\sqrt{ }$ ystem. "sell-powered" in the same way as the old magneto systems. There are no
curcent reverse. The ate voltage is fed to a diode rectifier (3). converted to de. and then fed to the capacitor (4) to charge it to about 300 volts.

The other plate of the capectitor is connecied to the anode of the silieon controlled rectilier (6). The SCR cathode is connected to the primary "inding of the spark cooil. (7). The SCR', gite is connected to the trigger coil (5). When the magnet passes the trigger-conil lamination. it generates a small voltage, only 1 volt or so. This gate, the SCR on, and the capacitor is discharged through the spark coil. The fermbillmed on prage 75)

FIG. 1-COMPONENTS OF THE SOLID STATE UNIT. Numbers are explained in text.
moving pats in the system itself: no hreaker points. no "condenser". etc.

Fig. I is a schematic diagram of the whole sybtem. Three éoils are used. One in the "chalrging cool" (2), another the "trigger coil" (5) and the last. the " 5 park coul" (7). Which is the satme ats that used on attomobiles. ()utput of this sybtem is up around 30.000 volts.

All coil are energi/ed by a magnet huilt into the tim of the flywheel. As the flywheel turns. the magnet moves past the laminated cores af the coils. (We"regoing to do sumething else with that spark coil in just at monent.) Fig. ? shows how the unit and magnet are mounted.

Here is the seytence of events which happen is the flywheel tarns. When the magnet passes the charge-coll laminations. it indaces a voltage in that coil This is trae ac. since the magnetic field is huilt up, then collapes to make the

FIG. 2-MECHANICAL DETAIL, showing how magnet advances spark with increasing speed.

Stocking these 9 ECG semiconductors is like having hundreds of solid-state deflection circuit devices on hand.

GTE Sylvania has checked out hundreds of different TV set models to find out what they have in common.

And we've been able to boil down practically all of their deflection circuit needs to just nine parts.

Then, we put together a brand-new cross-reference guide (ECG-212E) that tells you which of the nine units replaces which numbers.

But, we didn't stop at deflection circuits. Our new guide also covers over 75,000 other parts including industrial components as well as all types of home and auto entertainment equipment.

Because we've reduced the number of parts that you have to have on hand, it's easier to keep a complete stock.

And that makes it easier for you to be sure you have the part you want when you want it.

GTE SYLVANIA

WARRANTY PROBLEMS

Just a few weeks ago a major tape recorder manufacturer more than doubled its warranty protection period. Recently I received the announcement of a major advertising campaign being launched by this same company. It's really wonderful-better equipment, purchasers protected by longer warranties. more advertising to sell more components. What is good for the high-fidelity industry is good for Eastern Stereo Servicenter . . . or. at least. that used to be our attitude.

But what about service for these growing quantities of all this wonderful new equipment? Equipment is becoming more complex with every new model introduced. First a channel was added to make stereo: now the industry is in the process of doubling the number of channels again, more than doubling our job of servicing. And with more complex technology involved-Dolby or other noise
reduction systems, matrix or discrete demodulators-the investment in test equipment and people to use it is costly.

We independent service organizations are being expected to keep pace with changing technology and extended warranty periods without any increase in compensation. Getting good service on a piece of hi-fi gear is a problem that already exists in many areas. If manufacturers continue their present policies and attitudes, it will get much worse.

I wrote to the tape recorder company's president at the time his firm extended its warranty period, but didn't even receive the courtesy of a reply. Another manufacturer recently demonstrated its interest in its equipment purchasers being able to get qualified in-warranty service by reducing its labor rate. Getting parts orders filled within a reasonable amount of time and being supplied adequate servicing literature continues to be a major problem with a number of companies. (The
customer blames us, not the manufacturer, for delays caused by this deficiency.)

The facts appear to be adding up to one thing. Too many manufacturers look at warranty service as being a necessary evil, responding principally to sales needs and governmental and consumerist demands. While it may not matter to the manufacturers. I don't believe that the industry as a whole can afford to lose the few good service facilities that do exist. If service were not important to dealers. why is it so many of them promote their service department (when most don't have even one qualified technicial or any good test gear) and extra long warranties?
We believe ours is a badly-needed commodity, with the need increasing as the industry continues to grow. If service truly is important. I challenge those concerned to place the service function on an equal level with manufacturing and sales.

Now two RCA 5-inch scopes... DC to 10 MHz response

The Triggered/Recurrent Sweep WO-535A . . $\$ 349.00$ (Optional Price) including probe

The Recurrent
Sweep WO-505A . . .
\$329.00 (Optional Price) including probe

To buy:
order from amy one of tho inore Thatn 1,000 Aulhormed RCA Distributors worlduride or throuqh RCA Flectronic Instruments Headquarters, Harrison, N.J. 07029. (RCA will forward your neder In the distrituitor of your choice.) Also ask for your copy of the new full-line Electronic Instruments 101218F catalog.

Electronic Instruments
and begin giving it fair and honest treatment. Manufacturers ... Industry What is your response?

We at Eastern Stereo stand ready to participate with those interested in opening up a dialogue and serious discussion. Marlin R. Taylor

Eastern Stereo Servicenter. Inc.

 Upper Saddle River, N.J.
LEE de FOREST

This comes to you with heartfelt appreciation for the splendid article written in your magazine about Lee. And especially the part in regard to the serious wrong in comparing Lee's great invention-the vacuum lube-with the Fleming valve. The article also will be a great help 10 me in clarifying this wrong in my talks to organizations and to the school students.

The fine photograph of the two friends together brings back fond memories to me when I first met Mr. Gernsback on my first visit to New York from California over forty years ago as Lee's bride. Perhaps you have heard that a commemorative stamp was issued for Lee in New York on July 12, 1973

Thank you again for everything. Thank you too for your kindness in sending me the extra copies of your magazine. They are being put to good use. One has been placed in the Electronics Museum to add to Lee's archives.

Maria de Forest Hemet, Calif.

IT'S A TRADEMARK

We read the article "Secrets of Ion Plasma Tubes" by James A. Gupton which appeared in the September 1973 issue of Radio-Electronics. We note with interest that both Dr. Bennett and Mr. Gupton recognize that "Aquadag" is a standard and well-known product in the electronics field. However. we would like to point out to you that "aquadag" is a registered trademark of Acheson Industries, Inc., and when used should be properly referenced and identified as our trademark. We are confident that your misuse of "aquadag" trademark was purely unintentional and know that you will cooperate in helping us to protect this valuable name in future articles.

> M. T. Musgrave

Port Huron, Michigan

NEW ASSOCIATION

The Amateur Television Association has been founded in 1967. It aims at promoting interest and stimulating experiments in the amateur video communication field

The association is a purely non-profit one, organized by radio-amateurs and based on voluntary cooperation at the service of its members. It publishes a three-monthly. mainly technical magazine, entitled ATA international.

[^0]BOOKS \& UNIGUE NEW BOOK/KITSFOR HOBBYISTS \& EXPERIMENTERS!

TAB Electronic

 BOOK/KITS
Book \& Kit for the Price of Kit

 Alone!FOR THE PRICE OF A KIT ALONE you get a book by an expert who opens the world of electromics to you PLUS a complete kit to help you start building and learning. You have fun putting together pasy to buntd projects that are both usetul and instructive
2OW FOUR-CHANNEL "QUAD" AMPLIFIER Extremely High Fidelity-20-100,000 Hz. Plug in your stereo record player (ceramic carindge) or stereo tape deck. and con nect a speakers for full derived quadraphonic sound Recovers back-channel ambience signals from any regu 1 lar stereo input Contains volume control Requires 16.18 V dc input. Frequency response- 20100.000 Hz . flat. Book is "Stereo Quad HI.FI Principles and Projects.
Order No. K. 11 Total Value $\$ 2490$ \$19.95 WAILING ELECTRONIC SIREN. A real siren wail that you control with pushbution. When used with external am. plifier. siren is suitable for civildefense. boat. and burglar alarm applications Book is "Electronic Hobbyist's IC Project Handbook.
Order No. K-12 Total Value $\$ 8.90 \quad \$ 4.95$ intrusion alarm. Makes Futuristic Pulsing Sound. Connect to dny door or window - when entryway opens. alarm is triggered. Alarm sound is same "relaxation oscillator." used in science fiction movies. Operates from small gu battery for applications. Connect toc ar battery for burglar dlarm use Book is "Electronic Hobbyist's ic Project Handbook
Order No. K-13 Total Value $\$ 11.90 \quad \$ 7.95$ TUNABLE ELECTRONIC ORGAN. Full Octave-plays through
 ment Each note fully adjustable. May be tuned to any key in music range. Output is extremely stable sine wave Irom phase-shift oscillator net work. Just connect to any dudio amplifier with standard interconnecting cables
Book is "New IC FET Principles \& Projects." Book is "New IC FET Principles \& Projects." $\$ 9.95$
Order No. K-14 Total Value $\$ 13.90$ AUDIO MIXER Mixes audio from 3 sources! A 3 channel input mixes sound trom all three without circuit laad.
 Order No. K-1 Total value $\$ 11.90 \quad \$ 7.95$ Order No. K-10 Total value $\$ 8.90$. $\$ 4.95$ HERE ARE LITERALLY HUNDREDS OR PROJECTS FOR HOBBYIST AT ALL LEVELS!

5-WATT HI-FI AMPLIFIER High power transiormeriess cir

 Cuit! The hif amplifier you complele from this kil witl provide 5 watts or more of audio int o your speaker No preamps or transtormOrder No. K-2 Total value $\$ 13.90$
$\$ 9.95$
ELECTRONIC FORTUNE TELLER Have fun with the laws of chance! Answer all yes-no questions at the touch of a button' Book is "104 Easy Projects for the Electronics Gadgeteer.
Order No. K-3 Total value $\$ 8.90 \quad \$ 4.95$ AM WIRELESS MIKE Broadcasts through any AM radio: Broadcast through any AM radio set. . from up to 100 tt . away. Book is "Transistor Circuit Guidebook."
Order No. K-4 Total value \$11.90 \$6.95 ELECTRONIC TOUCH SWITCH Touch and light goes on Lamp automatic ally comes on when you touch switch goes off when you stop touching the switch. Book is - Transist or Projects for Hobbyists and Students.

Order No. M-5 Total value $\$ 10.90$
$\$ 6.95$
GARAGE LIGHT CONTROL Unit switches when light hits it Your headlights will turn on either inside or outdoor garage lights Turn them off manually when you're safely inside. Book is "Transistor Projecis for Hobbyists and Students
Order No. K-6 Total value $\$ 13.90 \quad \$ 9.95$
AUDIO SIGNAL GENERATOR-INJECTOR Use as a tester audio oscillator. or RF generator ${ }^{1}$ Makes a precision in strument for checking frequency response of ampliliers and for signal tracing. Can be used as an RF signal enerator Book is. Transistor Projects for Hobbyists and Students.
Order No. K-7 Total value $\$ 9.90 \quad \$ 5.95$ LOW-VOLTAGE DC POWER SUPPLY Well filtered, half-wave miniature circuit. An effective DC power source $110 \mathrm{~V}, 1 \mathrm{~A}$ for test bench duplic ations. nowering transistor circunts etc. Book is "104 Easy Projects for the Electronic Gadgeteer
Order No. K-8 Total value \$8.90 \$4.95 DIOOE TE STER Checks diodes in or out of circuit! The diode le ster you complete from thus kit gives a quick go. no go fest for all types of diodes. Also identifies polarily of inmarked diodes. Book is "104 Easy Transistor Projecis You Can Buld
Order No. K-9 Total value $\$ 9.90$ \$5.95
.95
HIGH POWER LAMP DIMMER Replaces wall-mounted light witch. Provides full adjustment of lamp bitliance.
\qquad
\qquad 5

TRANSISTOR CIRCUITS. 160 pps 144 III. No. 63 . $\$ 3.95$ TRANSISTOR TECHNIQUES. 96pps. 76 iI. No. 61 . $\$ 2.50$ FUN WITH ELECTRICITY. 128 Ups. Fullly ill No $83 \mathbf{\$ 2 . 9 5}$
TRANSISTORS-HOW TO TEST. HOW TO BUILD.

TRANSISTORS-HOW TO TEST. HOW TO BUILD.			
96 HILS. 65 III NO. 94			
LEARNELECTRONICS BY BULLING. 208 HDS 214.11	$\$ 4.95$		LEARNELECTRONICS BY BUILDING. 208 MDS
:---			
GETTING STARTED WITH TRANSISTORS. 160 . $\$ 4.95$		GEITING STARTED WITH TRANSISTORS. $160 \mathrm{p} ~$	
:---			
100			
104 HAM RADIO PROJECTS FOR THE NOVICE TECHNICIAN	192 pps. 104 II NNo. 468 .		

104 SIMPLE ONE-TUBE PROJECTS
CB RADIO OPERATOR'S GUIOE. 22AppS. No $499 \begin{aligned} & \$ 3.95 \\ & \$ 3.95\end{aligned}$ 125 DNE-TRANSISTOR PROJECTS. 192pps. NO. $537 . \$ 3.95$
TRANSISTOR PROJECTS FOR HOBBYISTS AND STUDENTS ELECTRONICS SELF-TAUGHT WITH EXPERIMENTS \&
PROJECTS 288pus. 191 III. No. 553 \$4
MINIATURE PROJECTS FOR ELECTRDNIC HOBBYISTS.

INTERMEDIATELEVEL BOOKS

STEREOMUAD HI-FI PRINCIPLES \& PROIECTS 192 pps.. 105 III . No. 647
PRACTICAL SOLID-STATE PRINCIPLES \& PROJECTS 104 EASY PROIECTS FOR THE ELECTRONICS GADOE $\$ 3.95$ 104 EASY PROJECTS FOR THE ELECTRONICS GADGETEER 64 HOBBY PRDJECTS FOR HOME \& CAR
104 EASY TRANSISTDR PROJECTS YOU CAN BUILD 224 pps. 105 ill. No 462
 TRANSISTOR PROJECTS. 160 pps. 123 ill No $89 \$ 2.95$ ELECTRONIC PUZZLES \& GAMES 128pps., No $70 \$ 2.95$ TRANSISTORS.THEDRY \& PRACTICE 160 pps ELECTRONIC HOBBYIST'S HANDBOOK 160 pps HOW TO READ ELECTRONIC CIRCUIT DIAGRAMS 192 pps. 18 page 101 dout section. No. 510 DIGITAL ELECTRONICS-PRINCIPLES \& PRACTICE

FOR THE ADVANCED MOBBYIST

HANDBDOK OFICCIRCUITPROJECTS. 224pDS
NEWICFETPRINCIPLES \&PROJECTS. 160 p. NO 61 UHF PROJECTS FOR AMATEUS \& EXPERIMENTER HOW TO BUILD SOLID-STATE AUOIO CIRUCITS 320 poss. fully ill. No. 606 SOLID-STATE PROJECTS FOR EXPERIMENTER RAOIO-ELECTRONICS HOBBY PROJECTSNO.
$\$ 4.95$
$\$ 3.95$
$\$ 4.95$$\$ 5.95$
$\$ 3.95$
No C PROJECTS FOR AMATEUR
IECTRONIC HORBYIST'S IC PROJECT HANDBOOK$\$ 3.95$
NEW SKILL-BUILDING TRANSISTOR PROJECTS \& EXPERIMENTS. 192pps.. 129 ill No 129. $\$ 3.95$

No
4.95

122

$1 R A$| No |
| :---: |
| 4.95 |

ELEC ELECTRONIC CIRCUIT DESIGN HANDBOOK-NE4TH EDITION
BOOKS OF GENERAL INTEREST TO HOBEYISTS
UNDERSTANDING \& USING THE VOM \& DVM
UNDERSTAND
UNDERSTAND$\$ 4.95$
BASIC ELECTRICITY \& BEGINNING ELECTRONICS $\$ 4.95$
256pps. 191 III No. 628
BASIC ELEC 55.95
THE FASCINATING WORLD OF RADIO COMMUNICA ONS
MATEUR RADIO NOVICE-CLASS LICENSE STUDY 53.95Guide 180 pus. 57 ,ll. No 573
DICTION
300 $\$ 3.95$
TUREITRANSISTOR SYBSTITUTION GUIDE $\$ 2.95$
HOW TO USE YOUR VOM, VTVM \& OSCILLOSCOPE $\$ 3.95$
NO-RISK COUPON-MAIL TODAY!
ITAB B00KS, Blue Ridge Summit, Pa. 17214
FREE Trial
No No
No No
No
No

ELECTRONIC HOBBYIST'S IC PROJECT HANDBOOK
1601 P . 86 III. NO. 464

完

Build yourown Bell \& Howell solid-state 25-inch diagonalcolorTV!

It's an enioyable way to learn valuable skills in the exciting new field of digital electronics and also get a brand-new color TV you build yourself! For free information, mail the postage-free card today!

Enjoy the personal satisfaction of building your own color TV

It's not an ordinary accomplishment. You can take pride in it because you did it all yourself. And you'll find digital electromics a fascinating world to explore. It's an absorbing way to spend your spare time . . . tinkering with the equipment . . . reading up on electronic principles . . . and finding out how they work in practice.

Not just a kit - a complete at-home learning program in home entertainment electronics

Skilled instructors at Bell \& Howell Schools have carefully prepared a program that starts you off with the basics and guides you smoothly through the course with step-by-step instructions. You'll enjoy the challenge of learning something new that could lead to extra income opportunities for you.

Attend special "help sessions" ...talk to your instructors in person

A unique advantage of your learn-at-home program is the "help session." Scheduled regularly at Bell \& Howell Schools and in cities around the country, these informal seminars give you face-to-face, personal assistance from our instructors. You'll meet other students and enjoy talking shop.

Master the most up-to-date solid-state and digital technology

As color TV moves closer toward total solid-state, and as the more accurate and reliable digital systems begin to appear in home entertainment gear, you'll be thoroughly familiar with the most
advanced troubleshooting techniques for these sophisticated circuits.

Digital electronics is growing everyday - and you can cash in on it!

Digital clocks and pocket calculators are already on the market. Soon, everything from speedometers to stereos to kitchen stoves will have digital readout and control systems in place of conventional dials and needles. During your program, you can gain the know-how to build, service or repair this new digital equipment, part-time or full-time!

You also build and keep the NEW Electro-Lab ${ }^{\circledR}$ electronics training system

Three professional instruments . . . a digital multimeter, design console and solid-state oscilloscope designed exclusively for Bell \& Howell students . . . provide you with necessary practical experience during your program. It's the equipment you need to successfully analyze and master the principles of today's digital technology.

Earn extra income part-time or get ready for your own service business

We'd like to tell you more about this fascinating digital electromics program - and how it can lead to a promising future - full or part-time. Mail the attached card today and get all the facts.

NEW from Bell \& Howell Schools . . . first time ever offered!

When you build your color TV, we include a complete volume on the "Guidelines For Starting Your Own Repair Business." It gives you all the basics including setting up shop, basic bookkeeping and income tax, small business legal requirements and customer relations. It's just another way we can help

Have power will travel

If you're working on mobile equipment for roadway, seaway or skyway, Triad has the right transistor power supply transformer for you
For example, if you're after high power, you'll want to take a hard look at Triad's TY-85 This sturdy, epoxy-molded toroidal unit works from a 12 -volt source and puts out 350 DC milliamps at 600 DC volts from a fullwave bridge rectifier. Peripheral terminals and single mounting hole simplify installation, facilitate stacking
The TY-85 is only one of a complete line of epoxy-molded toroidal transformers for use with 6,12 and 28 -volt battery-driven transistor inverters. The feedback winding is split on most of these units, allowing operation in either commonemitter or grounded collector circuits.
Triad also makes and stocks DC to AC and DC to AC open style, ferrite core transformers, and DC to AC vertical-shielded types. Write for information: Triad-Utrad Distributor Services, 305 N. Briant Street, Huntington, ind 46750

봉
TRIAD-UTRAD
Litton
Distributor Services
equipment report

Circle 86 on reader service card
I THOUGHT YD IOST THE CAPACITY FOR being amazed but 1 really haven'. They handed me a beatuiful little soft leather pouch. about the size and shape of a hig hot dog bun. "What's that? ". Oh. that's just a self-contained. athtomatic-ranging digital multimeter. It'll read ac or de up to 500 volts. and resistance up to 10 megohms." "Oh, is that all? Hmm. Opening the zipper pouch. I found a device not as big as an electric toothbrush, with a coiled pigtail lead! (See this month's cover.)

It iows a DVM. with all of the features mentioned above. This is the HewlettPackard HP-970A Probe Multimeter. It is, too-a "probe". A folding test prod on the business end can be set to several angles. To take a reading, just clip the pigtail lead to the low side or ground of any circuit. and use the instrument itself as the "test prod"! The readout is a 5 -digit LED unit, on the end of the case.

A flexible plastic band around the case is the function switch. It can be set for ac or de volts. or resistance (in kilohms). From then on, all you have to do is touch the prod 10 the circut: the HP-970A does the rest by itself? Voltages read in five ranges: 0.1. 1.0. 10. 100 and $1(60)(500 \mathrm{~V}$ maximum input. ac or de).

The HP-970A is an "auto-ranging" type meter. Special circuitry adjusts the reatout to whatever scale will display the reading hest. Oddly enough. I used it for quite a while. taking several different voltage readings. before it dawned on me what this little thing was doing! It was selting it self to display the voltage. anywhere from ahout 0.5 V up to about 250 V . The decimal point moves. so that you always know what the reading is.

For resistance the HP-970A reads in kilohms: thousands of ohms. For example. a 470 -ohm resistor reads out as 00.470 . A 2200 -ohm resistor as $\mathbf{0 2 . 2 0 0}$. etc. For those limes when we inadvertently do something that we know better than to do. a fuse resistor is included, in the ohmmeter circuit! It will withstand 115 V rms for up to one minute, and 250 V ims for 10 seconds. It is recommended that we take HP's word on this: I know I will!

Accuracy: the manual says 2% of reading plus 0.5% of the range in use. Accuracy of these tolerances is guaranteed, with measurements traceable to National Bureau of Standards calibration. The input impedance is a very high 10 megohms on all ranges.

A separate Current-Shunt/Bench Cradle (cominuted on page 81)

Telemlatic Write us for free subscription of current cross-reference charts.

2245 Pitkin Avenue, Brooklyn, N.Y. 11207
The Mark Ten B Capacitive Discharge Ignition System keeps your car in tune ... and everyone knows that a well-tuned car gets better mileage, requires less maintenance, runs longer and better, and helps in the quest for cleaner air.

WHAT'S NEW in CB

> Citizens band equipment has come a long way since the 27 MHz sector opened just over a decade ago. Here is a glance at
> what's available in transceivers and accessories.

JUDGING BY THE AMOUNT OF NEW equipment coming out almost daily, the only things certain in life are death, taxes and the Citizens band. Never in the history of consumer electronics has there been such a diverse selection of equipment. As far as the $C B$ user is concerned virtually anything desired in the way of features and/or performance can now be found in the CB marketplace. And it's a good safe bet that if you can dream up some feature not yet available some manufacturer will go all-out to incorporate that feature in his new equipment just as soon as he hears about it.

Fact is, there is so much differing CB gear available it's difficult to even start to describe the features available which could be of use to you or your customers. Perhaps the best way is to detail the features common to most. if not virtually all. CB transceivers and then break similar equipment down to common categories.

Features worth noting

Heading the list of common features is an external speaker (or remote speaker) output jack, previously common primarily to the full-feature transceivers only. Whether it's a need to get the signal over the ambient noise level by placing a speaker on the truck's dash directly in front of the driver, or a way to get the signal from the living room to a shop or backyard speaker, or
just a quick and dirty way to connect headphones, all CB manufacturers have tinally recognized the fact that an external speaker output is a must have and is not necessarily restricted to top-of-the-line transceivers. Now, even rock-bottom priced. limited-channel transceivers have this feature.

Another almost universal feature. found on mobile transceivers and some base station models is the PA (public adress) output jack, which permits the transceiver to be used as a public address system. Except for the very lowest priced models, this is also a common feature found in CB transceivers.

Metering is another biggie. Virtually all transceivers (except the budget models) have some sort of metering to show the relative signal strength of a received signal and the relative power output of the transmitter. In the high priced, or more deluxe transceivers -both AM and SSB models-there is likely to be more extensive metering including perhaps transmission (antenna) line SWR and perhaps relative or percent modulation. For example. some models from Browning. Dynascan. Midland, Pearce-Simpson. Regency. Robyn. Teaberry, and Tram have at least an SWR meter. while Browning and Dynascan also include a modulation meter in some models.

While everyone makes available a transceiver with full 23-channel coverage there are still many transceivers
around which accommodate only 3 or perhaps 6 channels, for the user who has no need for full coverage. If you don't need full 23 -channel coverage. you'll tind a model in the lines from Dynascan, E.F. Johnson, Lafayette Radio. Midland, Pathcom (Pace), Pearce-Simpson. Realistic, Royce and Teaberry, just to name two handfuls. Actually, if you're not a CB hobbyist there's no real percentage in a full-23 rig as the extra, rarely used crystals can easily represent $\$ 50$ or more in additional cost.

To meet the need of the CB user who must conceal his equipment, say in the

SKIPPER 73 is a hybrid rig from Palomar.
car's glove compartment, or who needs a rig that can be easily plugged in and set on the seat next to the driver, full 5 -watt models have been shrunk down to the size of a child's walkie-talkie -the type sold for "Christmas presents". Some typical examples of the powerhouse handfuls are Lafaverte's

HY-GAIN 623 has features and looks of a ham-band transceiver.
MIDLAND MODEL $13-881$ scans any two selected CB channels.

REALISTIC TRC-46, a top-notch mobile rig.

PEARCE-SIMPSON Lynx 23 base transceiver.

TRAM TITAN IV resembles hi-fi gear.

Micro 12 which measures in at about $13 / 4^{\prime \prime} \times 5^{\prime \prime} \times 71 / 2^{\prime \prime}$. Realistic's Mini-23 which shrinks a ruler to $I^{1 / 2 "} \times 51 / 4^{\prime \prime} \times 8^{\prime \prime}$ for full 23 -channel coverage. Teaberry's really mini MINI-T II at $13 / \mathrm{Kl}$ $\times 43 / 4^{\prime \prime} \times 6^{\prime \prime} / 32 \ldots$, and Rovie's model $1-590$ which puts a full 5 watts into a jacket pocket. A feature of the Royce mini-mini sure to catch on is a plastic. rather than metal cabinet-which cuts the weight down almost to nothing. A camper can pack away a plastic-housed transceiver into his backpack and add virtually nothing in the way of extra weight.

Just as some transceivers have shrunk down to pocket size, the basestation models have grown larger and larger, jam-packed with features to spare. One particular feature coming into prominant use is the built-in digital clock such as used on some models by Dynascan. Courier, Fanon, Midland and others. In addition to indicating time. the clocks can be used to turn on the transceiver at a preset time to receive a scheduled "call". On the other hand. Browning and Tram use the giant size cabinets to house relatively large speakers. oversize easy-to-read meters and the extra controls needed for such things as microphone gain. SWR calibrate. etc.

Emergency services

With many CB'ers getting actively involved in volunteer rescue and emergency services it's only logical that they would have good reason and need to monitor the vhf public-service
frequencies. While they can always use a separate vhf monitor radio. it is a convenience to have the vhf monitor built right into the CB transceiver. Presently. Courier and lafayette have the only CB rigs with integral vhf monitors. hut rumor has it at least two other manufacturers will soon have CB/vhf models.

And while we're on the subject of

COURIER REBEL 23 mobile iransceiver.
emergency services. let us not overlook the channel-9 emergency frequency. For REACT. AI.ERT and other "emergency CB groups" who provide full- or part-time monitoring of the national emergency channel, there are several transceivers with integral channel 9 monitoring. In almost all instances the channel-9 monitor consists of a fixed-frequency front end. i.f. amplifier and detector in addition to the regular $C B$ receiver section. Even if the main receiver is tuned to a different channel. say channel 16, a signal appearing on channel 9 will cause some sort of panel indication. such as a lamp
lighting, to indicate there's someone calling for HELP.

In some of the rigs with dual-receiver capability a signal on channel 9 will actually over-ride the main receiver reception, or the main reception will be interrupted and only channel 9 will be heard. Since the exact method of alerting the user to the presence of a channel 9 signal differs from model to model it's hest to look for the exact type of operation desired: among the brands offering channel 9 or dual-receiver capability are Dynascan. E. F. Johnson, Lafayette and Realistic.
Unlike the conventional AM (amplitude modulation) CB transceivers which are available in everything from budget priced single-channel models from about \$40-which feature just about enough circuitry and performance to get a message through if the CB band isn't jammed with stations. to high-performance models with performance levels matching the finest in equipment from any radio service, SSB (single sideband) CB transceivers have only one level of performance-as high as possible

SSB rigs are available in mobile and base versions-the main difference being the power supply and perhaps a digital clock in the base models; otherwise. circuits and performance are essentially the same. All CB SSB rigs feature operation on both sidebands and AM. and if we'd look for one outstanding feature it would be superselectivity for both the AM and SSB models. Either way, these are the rigs

that get the message through under the most severe interference conditions.
In addition to super-selectivity, a highlight feature of the SSB transceivers is a noise-blanker-a device that just about eliminates all impulse noise by literally punching a hole in the signal where a noise pulse should be-or would be even with an ordinary noise limiter. Though a few of the high performance AM transceivers feature a noise-blanker-generally inaddition toa noise limiter for the "grinding" type of continuous noise, all SSB transceivers we have seen feature a noise-blanker.

Almost all CB manufactuers now have at least one-generally more. SSB model in their line. Most all have essentially similar features and performance specifications, the major difference between models of the same family (mobile and base) being physical size, mounting convenience or power supply-some mobile models are negative ground only, some are negative or positive ground and some are $12 \mathrm{Vdc} / 117 \mathrm{Vac}$.
Walkie-talkies are still just walkietalkies: everything from $100-\mathrm{mW}$ "toys" to full-feature 5 -watt models are available from endless sources under endless brands. The only thing that's really new are the full 23 -channel models, which are basically highperformance 5 -watt units packed into a walkie-talkie sized cabinet-generally

TS-1 CUSH-CRAFT $27-150-\mathrm{MHz}$ dipole.

CUSH-CRAFT RINGO has 3.75 dB gain.
with a shoehorn. Using optional NiCad batteries, or a "penlight" battery pack, these units usually feature everything youdd find on a full-scale transceiver such as remote speaker output. external ($12 \mathrm{~V} d \mathrm{c}$) power supply, antenna jack. etc. So far, Lafayette and Realistic have had their full-23 walkie-talkies on the counters, with Midland, among others, announcing similar models at the time this is being written.

About antennas

Citizen band antennas come in every size and shape in almost every conceivable price range from a few dollars up. While there are still the old reliable ground planes, coaxial, and mobile whip antennas available, there are also
highly directional models that look like they were used on the last moon shot -fact is, one model is called a "moonraker". As we move up the base station price range we find the antenna "gain" almost proportional to the price increase. For a few dollars more than the price of a basic groundplane there are "stretched groundplanes" with a few dB of extra gain-attained by beaming the energy usually radiated skyward down on the ground where it does some good. Add a few dollars more and we find 3 -element beams such as used by the radio amateurs. only the $C B$ beams are vertically oriented.

Keep moving up the price ladder and we get to 4-. 5-, and 6 -element beams -each element (usually) adding a little more extra forward gain in a narrower forward radiation angle. Even the familiar "quad" (four-sided) element design of the radio amateurs has made its way into CB; and depending on how much you're willing to spend it's possible to get slightly more than $12-\mathrm{dB}$ forward gain. which is like running almost

VERTICAL BEAM with 8 dB gain by Cush-Craft.

80 watts into a standard groundplane antenna. At the receiving end the effect is almost the same as if the transmitter suddenly increased its power input almost 16 times.

Both standard and super-gain base station antennas are available-in a rather broad selection. under the old familar brands such as Antenna Specialists. Avanti. Cush-Craft. HyGain. and Mosley.

Mobile antenna are available in every possible mounting system. from the standard body or humper mount to magnetic and vacuum types which leave not a mark when they're removed. Among the manufactuers who offer a large variety of mobile antennas and mounting devices are Antenna Specialists. New-Tronics and Shakespear. Lafayette and Radio Shack (Realistic) have a large "house brand" assortment. Though the selection is not

TRANSCEIVER TESTER aids troubleshooting.

FANON T-1000, 23 channels, 5 watts.
as great or varied as it is for attomobile antennas. there are enough marine $C B$ antennas to meet just about any type of mounting requirement.

Extras you might want

Gimmicks-operating aids, if you prefer. abound in CB. For those who needmore microphonegain-perhapsto compensate for alow voice level-there are microphones with built-in amplifiers from Turner, who also produces an amplified model(s) with a built-in speech compressor for greater "average" modulation (talk power). For those who need only speech processing or compression without a new microphone there's equipment from Ascom and Gold Line. among others. Hy - aain has a receiver preamplifier for souping the transceiver's sensitivity. while Johnson has a $6-\mathrm{Vdc}$ convertor for powering "modern" 12 Vde transceivers from 6-volt power sources. There are also antenna meters and antenna matching devices from Johnson: phone patches form Gold Line. I afayette and Realistic famong many others): TV1 (television interference) filters from Drake: and a super-deluxe base station control center with just about every conceivable stationaccessory feature from Hy-Gain.

If you need a CB "station" tester for measuring SWR (standing wave ratio). power output and perhaps modulation the catalogs from Burstein-Applebee. Latayette, Olson and Radio Shack list just ahout everything that's available. as uell as most other CB "operating adds". Fact is. the best place to browse

PEARCE-SIMPSON TIGER 23 is a mobile synthesizer rig.
MESSENGER 323-M is Johnson rig with dual receive capability.

PACE CB-9 is a mobile channel-9 monitor.
for most ("B equipments are in these catalogs.

Summing up. We can saffely state that except for photography no other hobby or interest has as great a sefection of equipment and accessories. There is a transceiver, antenna, walkie-lalkie and accessory to meet virtaally every possible operating need. There is no (B idea so far out that some one hasn't already thought of it and manutactured the necessary equipment.

R-E

Imagine what your friends will say wien they see your new solid-state 25 -inch diagonal CIE color TV and find out you buift it yourself!

markets. Your electroniss skills and knowled ge mill put you among the elite in this continuing technizal revolution! Acoording tc a U.S. Office of Education Eilletin, 2 Technical Careers You Can Learu In 2 Years Or tess, "The demand for people with techn cal skills is growing vice as fast as form y other group, waile jobs for the jurrained are rapidly disappearing. ${ }^{*}$
CIE hos trieised thousands of men like you.
CIE's specia AUTO-PRDGRANMED* Lessons are designed to make learning eesizr - even if you've never done a tything more complicated tham wiring a lamp. And when you've corrsleted your course. you'll be prepared tc take the Governmer: = C License exam -a must for zoppaying jobs in such fields as broedcasting Best of all you learn isell at home, in your spare time, while ycu go right on picking us ycur regular paycheck.
If you are in the servise or are a veteran, check the bjx on the attached refly card for complete information on educa-ional benefits under the G3. Bill.
Buich tho postage-pald rephy corocyd mail it today for comple hite information! if tio ene wegter semoved, write to: our newest office buildings, many. facturing plants, transportation systems, financial irstitutions, hospitals - even the newest super-

This 10 MHz Triggered Scope is $1 / 3$ the size of comparably performing scopes.

MODEL $1431 \$ 399.95$

It's a lightweight 13 pounds in your hand and a heavyweight performance wideband scope with a 35 nanosecond rise time on your bench or jobsite. Whether you're servicing or designing industrial equipment or TV, there's the right sweep speed and sync for easiest operation. If you know our Model 1460, the leader in wideband $5^{\prime \prime}$ CRT scopes, you know our new $3^{\prime \prime}$ Model 1431 which gives you the same high performance in one third the size. (Only $43 /{ }^{\prime \prime} H \times 7 / / \sigma^{\prime \prime}$ W $\times 127 / 6^{\prime \prime} L$)
Servicing, production, inspection, quality control and lab applications are all easier with this versatile all solid-state instrument. Triggering is accomplished with only 0.5 V peak-to-peak. Ten millivolts per division sensitivity, 0.5 usec $/ \mathrm{cm}$ to $0.5 \mathrm{sec} / \mathrm{cm}$ automatic and triggered sweep in 19 calibrated ranges, and external trigger input are just a few of the reasons you'll like it.

If you have been waiting to buy a portable scope until you could get all the features you'll ever need at a price you want to pay, you've been waiting for Model 1431. Contact your distributor or write Dynascan Corporation.

MODERN RECEIVER CIRCUITS

> The communications superhet has made some startling strides during its 42 years of existence. Here's what its latest versions look like.

by RAY MOORE

 communications receiver is hecoming more complex these days. It hats come a long way since James Lamb described the first one in QST in 1932. In his historic article lamb defined the need for good selectivity and described the crystal filter to provide it. He also showed how to obtain the necessary oscillator stability to go along with high selectivity and he told hou to tame an amplifier to get adequate sensitivity with the superheterodyne circuit. By 1934 and 1935 units which we would recognize today as communications recievers were on the market-National HRO. Hallicrafters Skyrider. Hammarlund Super-Pro.
The hasic design described by Lamb remained the exclusive configuration until 1947 when Collins introduced the 75A. This receiver had a variable first i.f. and a constant tuning rate and set new standards for frequency stability and readout. The 75A was an amateur-hands-only design but was hater followed by the general coverage 51J series. The variable first i.f. design is now used in most professional class communications receivers and many models in the low and medium price range.

In the early 1960 : frequency synthesis techniques were used in communications receivers for the first time and the first all-solidstate receivers appeared on the market. Early in 1962 Davco announced the IDR-30, a solid-state amateur receiver, and later in the year SBF introduced the SB-33, an amateur-band transceiver which contained a completely transistorized receiver. In 1964 National came out with the HRO-500 which was the first solid-state, general-coverage receiver. The same receiver incorporated a frequency synthesizer with a phase-locked oscillator to generate the $5(0) \mathrm{kH} \%$, stepped injection frequencies for the first miver.

Classes of communications receivers

Until the late 1940's all communications receivers were much the same. They varied only in the number of of and i.f. stages used and in the quality of construction. They were general-purpose instruments and were sold largely to amateurs and SWL's. with some

VARIABLE INJECTION FREO
$0.955-30.455 \mathrm{MHz}$
FIG. 1-BLOCK DIAGRAM of a conventional single-conversion superheterodyne receiver. Graphic symbols show each circuit function. The i.f. and audio amplifiers may each consist of one or several stages.
going to laboratory, commercial and military users. Point-to-point communications systems and others who needed more sophisticated and reliable equipment used custom-built receiving systems which often occupied several relay racks. Then. about 1949, the professional class of receiver appeared, a receiver priced beyond the mass amateur market and intended for military and commercial users who could afford the cost of the ultimate in stability and reliability. Some of the well-known receivers which appeared at that time were the Collins 5IJ. Hammarlund SP-600, and Hallicrafters SX-73. The difference between professional and general purpose receivers has continued to grow since then. Not many years ago a dual-diversity. independent sideband receiving system would have consisted of four separate receivers, combiners, oscillators and single sideband adaptors in several racks. Today such a system caan be purchased in a single receiver cabinet.

Any attempt to classify communications receivers is bound to be arbitrary and subject to argument but the classifications that follow may be useful in picturing the wide variety we now have.

1. Professional receivers are priced from $\$ 2000$ to $\$ 10.000$ and are intended for communications circuits handling voice and data transmissions. Receivers in this class are invariably solid-state and cover the entire high-frequency range.
2. Intermediate professional receivers are found in the $\$ 800$ to $\$ 2(0)$ price range. They are general-coverage and solid-state. They are intended for the hudget minded protessional user and for the individual who can atford the beot.
3. General-purpose, medium-price ($\$ 300$ to $\$ 800$) receivers are sold mainly to individuals. amatears and short wave listeners. There are both vpecialised. amateur hands only, and general-coverage mudels. They may use vacuum tubes. transistors. or both.
4. Low-prieed receivers (under $\$ 300$) often provide a great deal of performance per dollar. Nany of them tend to be quite similar to

FIG. 2--A DOUBLE-CONVERSION SUPERHET. In this basic type, the first and second intermediate frequencies are fixed. The first i.f. may be passive or an amplified bandpass circuit.
medium-priced receivers with some relaxation in electrical and mechanical specifications. A large number are imported

Basic receiver signal paths

A complete receiver is a system consisting of several distinct circuil groups:

1. Signal path circuits
2. Frequency determining circuits
3. Control circuits
4. Power circuits

We will discuss the first two of these in more detail in the balance of this article since it is in the signal path and frequency determining circuitry that modern receivers are most dramatically different.

The signal path describes the sequence of circuits through which the intelligence-carrying signal travels from the antenna input to the audio output of the receiver. There are really only two basic signal path configurations. The first intermediate frequency of a superheterodyne can be either fixed or variahle. To look at it in

FIG. 3-THE FIRST I.F. IS VARIABLE in this dual-superhet. The first injection signal varies in $1-\mathrm{MHz}$ steps so the tuning range can be covered in a number of bands, each 1 MHz wide. The second i.f. provides the selectivity and may include a crystal or mechanical filter.

FIG. 4 (ieft)-GRAPHIC SYMBOLS representing different frequencydetermining circuits.
FIG. 5 (right)-PRE-MIXER OR PARTIAL SYNTHESIS makes it possible to develop a single-conversion superhet with good stability, constant tuning range and precise calibration. Interpolation oscillator with range of 1 MHz (or 500 kHz in some designs) develops a signal that is heterodyned against a crystal.
another way. a variable oscillator can be used to beat with the different signal frequencies in the first mixer to produce a fixed i.f.. or a fixed frequency oscillator can feed the first mixer to produce a variable-frequency i.f. A fixed first-i.f. receiver can be either single or multiple conversion. The receiver with a variable first i.f. has at least two conversions.

The fixed first i.f. was used by Lamb and by all commercial communications receivers until 1947. The incoming signal is converted to a fixed i.f. by a vartiable injection frequency in the mixer (see Fig. 1). The variable injection-frequency source. often from a simple tuned oscillator. must cover the entire frequency range of the receiver plus the value of the i.f. If a receiver has a fixed first i.f. at $\mathbf{4 . 5}$ kHz and tunes from 0.5 to 30 MH , the injection frequency must cover the entire range from 0.955 to 30.455 MHz -usually in bands with a frequency tuning ratio of around $3: 1$.

Simplicity is a virtue in receiver design and for that reason the fixed first i.f.. single-conversion receiver is attractive. However. as usually designed. the single-conversion receiver has two serious drawhacks when compared to modern receiver standards. First. the i.f. is a serious compromise between image rejection ratio which requires a high-frequency i.i. and adjacent-channel selectivity requiring a lou-frequency i.f. Second. the local oscillator. which provides the mixer injection frequencies. covers such a wide range of frequencies that it is almost impossible to build it to conform to modern standards for stability. constant and linear tuning rate. and calibration accuracy. With the availability of high-frequency erystal lattice filters (and various types of mechanical filters) and pre-mixer and synthesizer frequency generation techniques. it is now possible to overcome the drawhacks, and we may soon see a trend back to the single-conversion receiver.

The variable first-i.f. configuration is used in almost all professional-type receivers and in many medium-priced receivers. The advantages, over ordinary fixed first-i.f. receivers, are a comstant tuning rute and collibrution on all ranges and much better stability. These advantages are possible because the variable injection-frequency source which feeds the second mixer covers only a single. small hand of frequencies. The smaller the frequency range to be covered and the lower the frequency. the easier it is to build a stable and linear oscillator.

A typical variable first-i.f. receiver is shown in トig. 3. The circuit after the first mixer consists of a conventional fixed first-i.f. receiver tuning from 1.5 to 2.5 MHz . The first miver translates all incoming signals to the 1.5 to 2.5 MHz range by mixing them with a series of stepped injection frequencies spaced one MHz apart.

If you want to receive the 4.5 to $5.5-11 \mathrm{~Hz}$ band. for instance. a 7- NH H frequency is injected into the first mixer. A 5.5 MHz incoming signal beating with the $7-\mathrm{NIHz}_{7}$ injection frequency will produce at difference frequency of 1.5 JH z which falls within the range of the variable first i.f. A $4.5-11 \mathrm{~Hz}$ incoming signal will produce a difference frequency of $2.5 \mathrm{MHz}(7 \mathrm{MHz}-4.5 \mathrm{MHz}=2.5 \mathrm{MHz})$ which is at the other extreme of the variable i.f. range. Similarly. any other signal between 4.5 and 5.5 MHz will be converted to some frequency in the variable i.f. range. To tune signals in the 5.5 to 6.5 $\mathbf{M H} /$ range you inject an $8-M H_{2}$ frequency into the first mixer. and so on in $1-\mathrm{MHz}$ steps.

The signals from the variable j.f. go to the second mixer where they are mixed with a variable injection frequency covering 2.0 to 3.0 MHz and converted to the $5(\mathrm{M}) \mathrm{kH} /$ fixed i.f. The $5.5-\mathrm{MHz}$ signal which was converted to 1.5 MHz (as just described) would be mixed with a 2.0 .11 Hz injection frequency in the second mixer and converted to a frequency of 500 kHz . When the variable injection frequency is tuned to $3.0 \mathrm{MH} \angle$ it will beat with a $2.5-\mathrm{MHz}$ signal from the variable i.f. to form a $5(1)-\mathrm{kHz}$ signal. Thus, any signal between 1.5 and 2.5 MHz from the variable i.f. can be changed to $5(0) \mathrm{kH} 7$ by injecting the proper frequency in the range of 2.0 to 3.0 MHz

The injection frequencies for the first mixer can be from a crystal oscillator (translation mscillutor) with suitchable crystals spaced I $\mathrm{MH} /$ apart. The variable injection frequencies for the second mixer can be from an oxcillator which is sometimes called an interpolation ascillutor from its function of filling in between the steps of the translation oscillator.

Frequency-determining circuits

The second important group of circuits in a receiver are the frequency-determining circuits. In I.amb's receiver the frequencydetermining erreuit was a single high-frequency oscillator. In a modern. professional type receiver the frequency-determining circuits may be more compler and contain more active devices than the signal path.

There are four types of injection frequencies required in the different receiver configurations.

1. Wide range. continuously variable frequencies for the first mixer of fixed first i.f. receivers (1-igs. 1, 2).
2. Limited range. continuously variable frequencies for the second mixer of variahle first-i.f. receivers (Fig. 3)
3. Fixed, single-frequency injection for the second mixer of fixed first-i.f. douhle-conversion receivers. (Fig. 2)
4. Discrete. stepped frequencies for the first mixer of variable first-i.f. receivers. The frequencies must be spaced by the width of the first i.f. (Fig. 3)

The four types of injection frequencies are usually supplied by simple oscillators in low and medium-priced receivers. Oscillators have the advantage of simplicity and low cost. They have two disadvantages which can sometimes justify the use of more complex circuits. First. some commercial applications require stability on the order of a few hertz per day. I imited-range variable oscillators used in commercial receivers have stability specifications ranging from f00) Hz per two hours to 30 Hz per day. Better stability than this requires the use of frequency synthesis techniques. Secondly. the discrete. stepped injection frequency for the first mixer of a variable first i.f. receiver must he erystal controlled if a simple oscillator is used. This is not a problem in an amateur-bands-only receiver which may have eight $5(\mathrm{X})-\mathrm{kHz}$ hands. hut a general-coverage receiver covering 0.5 to $30 \mathrm{MH} z$ in 500 -steps $\mathrm{kH} / 2$ would require 59 crystals and a 59 -position switch. There is also the problem of zeroing in each crystal to maintain calibration aceuracy.

The different types of simple oncillators which can he used to provide injection frequencies are shown in Fig. 4 . The continuously variable injection frequency requried by the first mixer of a fixed first-i.f. receiver can he supplied by a switched high-frequency oscillator (Fig. 4 -ia). The wide frequency range which this type of oscillator must cover is achieved by switching inductors which are tuned hy a variable capacitor. The disadvantage of this type of oscillator is that there is a different tuning rate and calibration on each band-the tuning rate becomes faster and the calibration hecomes more crowded as you go higher in frequency. Also. it is almost impossible to meet modern stability requirements with an oxcillator covering such a wide frequency range. Top quality receivers using this type of oscillator have stability specifications of $3(0)$ to 3000$) \mathrm{Hz}$ per day at 30) MHz .

Limited-range variable-frequency occillators can be either capacitively or inductively tuned (Figs, + -h, $+-\mathbf{c}$). Their stability can be as good as 30 Hz per day because of their limited range and the relatively low frequency at which they operate. They can also he made quite linear so that a given frequency increment occupies the same space anywhere on the dial.
Only a single frequency is required for injection to the second mixer of a double conversion. fixed first-i.f. receiver and this can he supplied nicely by a crystal-controlled ascillator. (Fig. 4-d)

The discrete. stepped frequencies for the first miver of a variable first i.f. receiver can also be derived from a crystal oncillator. (Fig. $t-\mathrm{c})$ Different crystals are switched in to change hands.

The pre-mixer technique of frequency generation makes possible a single-conversion. fixed first-i.f. receiver with the stahility, constant luning rate. and calibration accuracy of the variable first-i.f. receiver. The comple xity removed from the signal path, however, is added to the frequency determining circuitry. Pre-mixing is a form of frequency synthesis since the final frequencies applied to the signal mixer are synthesized from other frequencies in a series of circuits (Fig. 5).

The outputs of a limited-range, variable-frequency uscillator and a crystal oscillator are hoth applied to a mixer. The difference between the two frequencies is then applied to the signal-path mixer through a buffer amplifier and filter. Crystals. $1.0 \mathrm{NIH} /$ apart, are switched in the crystal oscillator to change bands. The disadvantage of this technique for general-coverage work is the large number of frequencies put out by the pre-mixer-the interpolation oscillator frequency, the crystal oscillator frequency. the sum and difference frequencies, and higher order combinations of all these frequencies. All these unwanted frequencies can cause spurious responses if they get into the signal-path mixer. One solution is to put at tunable filter hetween the pre-mixer and signal-path mixer. Another is to use the output of the pre-mixer to control a phase-locked oscillator whose output is fed to the signal-path mixer.

A simplified block diagarm of the frequency synthesizer used in the Galaxy R-530 receiver is shown in Fig. 6. The R-530 covers a frequency range of 0.5 to 30 MHz in $5(\mathrm{~K}) \mathrm{kHz}$ wide bands with a variable first i.f. of $\$ 1.625$ to +2.125 MH 2 . This conversion scheme requires at series of discrete frequencies every $5(0) \mathrm{kHz}$ from +2.625
to 71.625 MHz for injection to the first mixer. These frequencies are provided by the frequency synthesizer to be described.

The actual frequency injected into the first mixer is generated by a tunable phase-locked oscillator. This oscillator is uned manually by a variable capacitor and it can also he controlled electronically by a dc voltage applied to a varactor diode. The desired output of the phase-locked oscillator is any one of 59 discrete frequencies spaced $5(10) \mathrm{kHz}$ apart from 42.625 to 71.625 MHz . the injection frequencies required by the first miver. The oscillator will tune the entire range continuously hut is held in and locked only at 500 kHz intervals by a series of control frequencies derived from the $1000-\mathrm{kHz}$ reference oscillator. much as the local oscillator in an FM receiver is locked to the signal by the afc circuit.

The output of the crystal controlled $1000-\mathrm{k} \mathrm{Hz}$ reference ascillator t in Fig. 6 goes through a divide-hy-two circuit to produce a

$$
\text { SYNTHESIZEA CIRCUIT USE D IN GALAXY R } 530
$$

FIG. 6-FREQUENCY SYNTHESIZER used in the Galaxy R-530 general-coverage receiver covers 500 kHz to 300 MHz in 500 kHz bands.
$5(0)-\mathrm{kHz}$ frequency which is applied to a harmonic generator which produces what in called a comb of frequencies. A comb of frequencies is a series of uniformly spaced discrete frequencies spread simultaneously across a portion of the rf spectrum. The output of the crystal calibrator in a communications receiver can he considered a comb of frequencies spaced $100 \mathrm{hH} /$ apart. The output of the harmonic generator in the $\mathrm{R}-530$ is a comb of frequencies spaced 500 $\mathrm{kH} / 2$ apart hetween 47.5 and $76.5 \mathrm{MH}_{2}$. The appropriate frequency from the comb is selected hy the filter following the harmonic generator. The tuning of the filter is ganged with that of the phaselocked uscillator.

The frequency selected by the filter from the comb is used as a reference to which the phase-loched oscillator is locked and it is aluays 4.875 IH / higher than the desired output of the phaselocked oncillator. The selected reference frequency is combined with the output of the phase-locked oscillator in the mixer. The difference hetween the two frequencies is applied through a huffer amplifier to the phase detector.

The phase detector has two frequencies applied to it. the output of the mixer and the output of the $4.875-11 \mathrm{~Hz}$ crystal-controlled reference oscillator. If the outputs of the mixer and the second reference oncillator are exactly the same frequency there will be no de output from the phase detector. If the two frequencies are mot exactly the same the phase detector generates at control voltage which is applied to the phase-locked oncillator to pull it into tune. Of course. there is a limit to the range over which the phase-locked oscillator can be pulled. Ausiliary circuits actuate a panel light and audio tone which tells when the phase-locked oscillator is not locked. The procedure is to tune the phase-focked oscillator tuning control until the light and audio lone go off. indicating lock has been achieved.

The R-530 synthesizer. in summary. produces 59 discrete frequencies, one at a lime, each one phase-locked to the reference crystal uscillators. Thus 59 crystal controlled injection frequencies are generated with only two crystals and no switches.

R-E

NEW

Some CB transceivers are as sophisticated as some of the more advanced gear used by hams and other 2-way operators. Here are details on circuits in 1974 rigs.

by ROBERT F. SCOTT
TECHNICAL EDITOR

SINCE THF II-GIfItR (27 (IH/) HAND) has assigned for Citizens band service early in 1959, the equipment has evolved from superregenerative receivers and modulat-ed-oscillator transmitters to solid-state complexities operating in both AM and single sideband modes and featuring such goodies as 23 -channel frequency synthesis. razor- sharp selectivity, and automatic noise limiters and blankers. This aricle describes some of the circuit features in the latest CB gear.
First, we 'll take a look at the block diagram (Fig. 1) of the L.afayette Micro 923, one of the more sophisticated transceivers that has frequency synthesis. Range Boost and a separate built-in monitor for channel 9 .

Frequency synthesis is a system that provides crystal-controlled transmission and reception on 23 channels while using only about one-fourth of the 46 crystals required without frequency synthesis. In the diagram, we have a total of 14 crystals in the synthesizer. The $33-\mathrm{MHz}$ oscillator uses one of the six crystals 50 kHz apart between 33.000 and 33.250 MHz . When transmitting, one of the $33-\mathrm{MHz}$ crystals is selected and its signal heterodyned against a $6-\mathrm{MHz}$ (6.035, 6.025,6.015, 5.995 MHz) crystal producing a difference frequency equal to the precise frequency of the desired CB channel.

The receiver circuit is a doubleconversion superhet with a 5.995-$6.035-\mathrm{MHz}$ first i.f. and $455-k h z$ second i.f. The first oscillator uses one of the $33-\mathrm{MHz}$ crystals that is between 5.995 and 6.035 MHz aboue the incoming signal frequency. The $6-\mathrm{MHz}$ output of the first mixer beats against a $6.4-\mathrm{MHz}(6.490,6.480,6.470$ or 6.450 MHz) signal from the second oscillator to produce the $455-\mathrm{kHz}$ second i.f.
To see how this works out. let's see what's needed for transmitting and receiving on channels 1 and 23-26.965 and 27.255 $\mathbf{M H z}$, respectively. On channel 1 , $33.000-\mathrm{MHz}$ beats against 6.035 to develop the difference frequency $(26.965 \mathrm{MHz})$ that we need. Similarly, when transmitting on 27.255 , we beat 33.250 and 5.995 to come up
with the desired frequency.
When receiving, we use the same $33-\mathrm{MH} /$ crystals to develop the first i.f-difference frequencies-of 6.035 MHz for channel I and 5.995 MHz for channel 23 . The second conversion oscillator frequency (6.490) for channel 1 and 6.450) for channel 23) provides te $455-\mathrm{kHz}$ difference frequency for the second i.f. amplitier.

Channel-9 monitor

The monitor section of the transceiver is a crystal-controlled single-conversion superhet that permits the CB operator to keep a constant "watch" on channel 9-the
emergency channel set aside by the FCC for calls related to assistance to the motorist and emergency communications involving safety of life or protection of property--while at the same time handling traffic on any of the other 22 channels. A signal on channel 9 flashes a special indicator light on the panel. Pressing a switch transfers the output of the monitor to the common audio output circuit. To respond to the emergency call. the operator disables the monitor. switches the channel selector to 9 and operates in the normal manner.

Some transceivers include complete transmit and receive circuits for channel 9.

FIG. 1-BLOCK DIAGRAM OF THE MICRO 923, a sophisticated AM rig from Lafayette Radio Electronics featuring frequency synthesis, Range Boost and a channel-9 monitor.

FIG. 2-FILTER METHOD of generating a single-sideband signal. The first pl oscillator is at the filter frequency. The second heterodynes the sideband to the desired frequency.

FIG. 3-A COMPARISON OF THE AM AND SAB CIRCUITS in a typical deluxe transcelver. The Range Boost circuits in the AM transmitter (a) are akin to the alc circults in the SSB mode (b). However, the former works at audio frequencies and the latter at if.

For example. Radio Shack , Realistic model TRC-49 Navaho Pro Niner includes a synthesized 23-chammel. 5-uatt transceiver. plus a separate crystal-controlled 5-watl transceiver.

Many of the more sophisticated CB rigs operate in the $A M$ mole and in the singlesideband mode using either the upper or lower sideband as desired. Single-sidehand (SSB) operation offers the CB operator quite an improvement in performance over conventional ADI. First. when tansmitting. all the awailable legal power can be concenthated in one sidehand to provide an ellective power gain of around 8 dB bat the receiver). Too heing able to use either sidehand at will effectively triples the number of availathe channels. On receiving. the SSB mode offers improved sensitivity and selectivity and a hetter signal-to-noise ratio to contribute further to an increase in operating range.

The SSB transmitter

In the SSB mode. the typical CB transceiver uses the balanced modulator/filter combination (Fig. ?) to generate the vinglesideband signal. The of oscillator signal-at the filter frequency-combines with the
audio signal in the halanced modubator so the carmer (the of oscillator frequeney) is suppressed and only the upper and lower sidebands appear in the output. The filter-generally a mechanical or crystallattice litter in the tange of around 5.6 10 II MH -has suflicient selectivity to pass one sidehand while rejecting the other

The SSB signal from the filter is then mixed with an of signal from the synthesizer. or an if oxcillator. to produce output on the desired $27-\mathrm{MHz}$ channel after being amplified in a lineror amplitier. In the LSB mode the of injection frequency is the differenes between the carrier and lilter frequencies. When the upper videhand in transmitted. the ff injection frequency equals the stam of the catrier and tilter frequencies.

For example. take the Pate Sideralk model CB 1023 that incorporates a $7.8025-1 \mathrm{~Hz}$ cryatal filter. Consider channel 13 (27.115 MH/). On the lower sidehand fansmit (and receive and AM tansmit) the of injection freyuency required for $27-\mathrm{MHz}$ ouput is $19.3125 \mathrm{AlH} /(27.115-7.8025)$. For USB transmit and receive the infection frequency is $34.9175(27.115+7.8025)$ HHz .

The circuitry used when the framsmitter is
used in the A 11 mode is quite simple compared to that used for SSB operation-even when frequency synthesis is used for carrier generation. On AM, we generate a $27-\mathrm{MHz}$ signal. amplify it to the desired oupput level and then use an atudio power amplifier to modulate the $B+$ supply to the rf power amplifier.

Fig. 3-a is at hlock diagram of Latayente's Telsat SSH-50 transceiver when transmisting in the All mode. The Range Boost circuit mantaiss a high level of modulation evithout aver-modulating. The feedback or control voltage is tapped off the high side of the modulation transformer secondary. The modulator's output is sampled. rectified by D) 1 and D22 and then filtered to develop a varriable bias to control the gain of the mike preamplitier.

Compare Fig. 3-b. the block diagram of the SSB-50 when transmitting on the upper sideband-with Fig. 3-at. (When operating on the lower sideband. the circuit is the same except in the $15-\mathrm{MHz}$ oscillator. On 1.SB, the frequencies of the four crystals are each 3 kH , lower than those used in the USB mode.)

The alc circuit-attematively called allotomatic load control and attomatic level control-is a form of delayed age that is applied to the transmitter to instite that the modulation peaks do not drive the linear power amplifier so hard that it operates in the nonlinear region. A portion of the output of the final (linear) amplifier is tapped oft and rectified to provide a de control voltage for the alc amplifier-a de amplitier controlling the hias for the i.f. amplifier following the crystal hilter.

The SSB receiver

The receiver in the SSB rig is generally at double-conversion superhet with the first i.f. centered on the filter frequency. The incoming signal passes through a hroadband 27- AHz amplifier to the firs mixer where it combines with the local oseillator signal from the synthesizer. The lacal oscillittor frequency is belom the signal frequency in the $1 . S B$ and AM moles and whowe the signat in the USB mode.

The receiver in the $\mathrm{A} I /$ SSH rig include a Norise Blanker and atumatic noise limiter (anl) to eliminate impulse-t!pe norise on SSB and AM signals. respectively: envelopetype AM detector, product detector for SSB and separate age circuits for $A, 11$ and SSB. We will how cover some of these features in detail.

Noise elimination

Impulse-type noise ats from antomobile ignition system and atmospherics can make CB reception very difticult if it is not eliminated. The All noise limiters generally use a pair of diodes hiased to clip the noise pulses at the level of a 100% modulated signal. In the $S S B$ mode. The noise eliminator-called a noise hlanker-is designed to eliminate the noise pulse before it reacher the selective circuits in the receiver. Figure f is the noise blanker circuit in the Pace Sieletalk CB-1023 mansceivel.

The incoming signal-along with any noise pulses-is amplitied in the of amplifier and converted to a $7.8-\mathrm{AHz}$ if. signal in the mixer. In the atsence of noise. the i.f. signal passes through Df to the crystal filter and on to the ift. amplitier. The noise component is rectitied hy DS and DG to produce a
positive pulse that is differentiated by C 413 and R411. This differentiated pulse is fed to the gate of the FET where it is amplified to the level needed to control gate diode D4. The amplified noise pulse back-biases I 4 so it cuts off for the duration of the noise pulse. Thus the receiver's signal path is interrupted and the noise pulse is eliminated before it reaches the i.f. circuits where it can cause "ringing" in the high- Q selective circuits.

Agc circuits

In an AM receiver. age voltage is develoned by the atudio detector or by a special
agc detector. This dc voltage varies with carrier level. There is no carrier on an SSB signal so special age circuits are needed to hold the receiver's output signal relatively constant. In some sets SSB agc is obtained by rectifying the audio in a full-wave rectifier to develop the de bias voltage to control the it and/or i.f. amplifiers.

In the Pace Sideralk. the agc circuit is as shown in Fig. 5. The output of the last i.f. amplifier is used to develop two levels of voltage. The voltage tapped directly off the i.f. Output collector is fed through the 47. pF capacitor to DIt and DIS to develop the low attack agc voltage. The higher voltage is

FIG. 4—NOISE BLANKER is a form of i.f. noise limiter. Noise pulses are rectified and amplified to turn off gate diode D4 in the Pace Sidetalk.
the release agc voltage developed by D12 and D13. Resistor R429 and capacitor C452 form the time constant of the release delay. The capacitor returns to ground through diode D17. On SSB. the diode is biased on. connecting the capacitor directly to ground. The release delay is not needed on AM so the diode biasing voltage is removed when the mode switch is in the AM position.

The FET acts as an age de amplifier. When a strong SSB signal is tuned in. the agc attack detectors (D)It and D15.) act quickly to charge C434 and C435. The release age diodes charge C432 with a voltage that acts as a reverse hias on D16. The voltage on C 434 and C 435 remains constant until the voltage on C432 has bled off through R429.

Automatic level control

The synthesizer and most of the low-level if and i.f. circuits are common to the receiver and transmitter. In the Pace CB-I023. the ri power amplifier operates Class C on AM and is biased into the A or AB region for linear operation on SSB.

MIDLAND MOBILE MODEL $13-862$ has topmounted meter and dial for easy visibility.

FROM I.F.

FIG. 5-SPECIAL AGC CIRCUITS are needed when the receiver is in the SSB mode. The age circuit used by Pace has separate attack and release time-constants for sideband operation.

FIG. 6-ANTENNA PROTECTION CIRCUIT in the Tram Diamond 60 disables low-level rif stage to protect the if power amplifier when the swr on the transmission line rises.

FIG. 7-VHF AND UHF converters for public and emergency services feed their output signals into a CB rig on channel 9 . The two vhf Ascom translators use this circuit.

In the ald circuit. a portion of the of output voltage is tapped off the antenna luning network. rectified. filtered and applied as gate hias to the FFT age amplitier. When transmitting. this age amplifier controls the gain of low-level of shages thead of the of driver and power amplifier.

The ale circuit is adjusted hy setting the mode switch in the 1.SB positon on channel 13. A $1-k \mathrm{H} /$ tone in fed into the mike at at level high enough to produce 9 or 10 watts output. A trimmer pot in the age circuit is set for 8 watts output.

The meter indicate the relative strength of incoming signals when receising and of power output when tramsmitting

Swr fail-safe circuit

Solid-state rf power amplifiers are particulasly vulnerathe fo damage from high woltages callsed hy a high standing-wate ratio on the antenna transmission line. Thus. an unprotected if output stage can he damaged hy a high SWR resulting lrom an offresonant antennat a poor ground or ground-plane or a defective lead-in.

The Tram Diamond fol transceiver employs a circuit to remove the drive to the final linear amplifier when the SWR rises atove a preset level. Figure 6 in a simplified schematic of the Tram apc (antenna protection circuit). The section of the swr hridge that develons rellected voltages is used as the control clement. The of voltage developed hy a high swr is rectified. amplified in a 2-stage de amplifier and then fed to the ape control amplifier connected acros the hase circuit of the first 27-. $\mathbf{2}$ ha amplifier. A high iwr culs off the drive to the $27-91 \mathrm{H}$, amplifier circuits.

The circuit is adjusted with a 250 -ohm resistor connected across the 5 ()-ohm antenna output terminals. Resintor RXI is adjusted in reduce the if outpus to $/ \mathrm{er}$ ateros the 250-0hm mismatched load.

Vhf and uhf monitors

Many people engaged in various form of public and emergency services need to monitor one or two specitic frequencies in the $30-5()-N 1 / 8$. $148-175-\mathrm{MH} /$ and +50- $\mathbf{4 7 0 - M H}$, hands. This has heen made

HIGH-BAND VHF CONVERTER from Ascom.

easy hy a group of three converters - Antenna Specialints call them trans-fators-that leed into a CB transceiver tuned to channel 9 . The narrow hand $F M$ is conserted to AM by slope detection.

Figure 7 is the circuit used in the two vhf tanslators. It consists of a MOSFET rf amplifier with high-() tuned circuits for maximum sensitivity. This is followed by a dual-gate MoSFET miver. A 2N5I 30 trans istor is the conversion oncillator. One of two crystals is selected hy a push-hutton switch.

There are many more new and interesting circuit innovations in the latest CH gear hut this is all that we have space for in this issue Watch for more circuit details.

Improvements in

The new and unique innovations in the field of high is lots that's new that has been momentarily to bring you up to date and starts with monplace-Kenwood's double switching demod-

by LEN FELDMAN

CONTRIBUTING HIGH-FIDELITY EDITOR

WITH WO DIKCII RFCFV EMPIISAS IN PRINT on four-channel circuit developments (logic circuits. CD-4 demodulator chips. logic chips. ete. I we tend to overlook some of the really important cireuit refinements that continually appeat in equipment designed by high-lidelity component manulacturers intent upon improving performance of more " $\|$ additonal". seemingly perfect components. Two examples of such circuit refinements will be analyzed this month. The first is an improved form of sereo multiplex decorling circuit developed hy the engineers of Kenwend Electronies, while the second is representative of a whole new breed of direct-drive turnables which have recently appeared on the mathet from such companies as Pioneer, Fechnics (hy Panasonic) and Sony, whose servo-coniralled electronic turntable will be described.

Double switching demodulation

A bloch diagram of a conventional switching demodulation circuit used in most stereo FM tecolers in shown in Fig. I. During the positive half eycle of the $3 x-h H_{\angle}$ switching signal. the leop shown by the solid line conducts while during the negative half cycle. the l (x) p shown by the doted line condiets. The steren signal, therefore is "sampled" and separated into left and sight outputs. If the switching waveform were a square wave. pertect separation of chanmels colat he achieved.

Actually, however. the switching wavefom is a sinewave. either internally generated by a local $19-\mathrm{KHz}$ uscillatordoubler arrangement or hy amplification and doubling of the incoming $\mid 9-\mathrm{hH} /$ pilot signal. With the use of this hind of switehing "aveform, it can be shown that the sulecillrier would have to he made larger than main channel components by a factor of $\pi / 2$ for perfect chanmel separation to take place at the outputs.
Nomatly. in simpler circuils, attempts are made to pre-emphasize the high frequency sulxarier components hefore they are applied to the switching demodulator. Since R-C networks are usually used to do this, it is impossible to hoost the entise subcatrier component spectum (23 kHz to 53 hHz) by an equal amoumt, and improved separation usually occurs at mid-band audio frequencies only.

Alternatively. differential amplifiers have

FIG. 1-CONVENTIONAL BALANCED-BRIDGE multiplex demodulator circuit.

FIG. 2-DIFFERENTIAL AMPLIFIER USED FOR "cross-cancellation" of unwanted crosstalk components following switching demodulator.

FIG. 3-BLOCK DIAGRAM OF KENWOOD'S DSD multiplex decoding circuit.

Stereo Circuitry

fidelity are not all limited to quadriphonics. There passed over. Our High-Fidelity Editor intends two new concepts that may shortly be comulator and Sony's direct-drive turntable.

heen used between the output amplifiers of more elahorate decoder circuits. as shown in Fig. 2. If we assume that the recovered "I." output really consisis of $I .+1 / a(R)$. [where $/ / a(R)$) is the unwanted cross talk appearing there because of improper switching demodulation]: then if $1 / a[R+1 / a(1)$.$] is fed$ to the emitter of Q1. the phase inverted input signal plus this signal applied to the emitter will appear at the collector of (Q):
$[1+1 / a(R)]+1 / a|R+1 / a(1)$.$| . which.$ expanded. equals:
$-I-1 / a(R)+1 / a R+1 / a^{2} L=-\left(I-1 / a^{2} L\right)$

FIG. 4-ACTUAL PARTIAL SCHEMATIC shows main and auxiliary diode bridge circuits used in the Double Switching Demodulator.

FIG. 5-KENWOOD'S KR-6340. One of many models using DSD circait in stereo decoding
section. Unit is a Quadriphonic receiver.

The R component is completely removed. Potentiometer VR adjusts the I/a signal. Capacitor (compensates, to sume degree. for level and phase of the higher frequency range of the demodulation differential signal. The reverse analysis holds true for the " R " recovered signal. Fven with this more sophisticated approach, it is difficult to make the level differential between main and sub channel components equal over the entire $50-\mathrm{H} / \mathrm{t} 0 \mathrm{I} 15.000-\mathrm{Hz}$ audio range. Normally, additional phase and amplitude differences are produced in earlier parts of

FIG. 6-PRINCIPLE OF SERVO-CONTROLLED motor in Sony PS-2251 direct-drive turntable.
the multiplex circuit because of SC A filter circuits which are usually present in typical decoler circuits.

Kenuood's Douhle Switching Demodulation system was developed to solve these problems. A hlock diagram of the system is shou n in Fig. 3 and a portion of an actual circuit is shown in Fig. 4.

A composite stereo signal can be represented by the general formula:
$F(t)=I+R-(I-R) 2 \pi 3800) t$.
In the circuit of Fig. 4. this function is divided into $F(t)$ and $-F(t)$ by the phase division circuit. The $-F(t)$ is reduced in amplitude hy coefficient K through the separation adjustment potentometer and is applied to the auxiliary switching circuit. The $38-\mathrm{kHz}$ subcarrier signal is applied to the two switching circuits 180° out of phase with respect to each other. If we consider the $38-\mathrm{kH}$, subcarrier to be in the form of a square wave. it can he expressed hy the following formula, corresponding to its negative and positive half cycles:
$S_{1}(t)=1 / 2+2 / \pi \sin 2 \pi 38000 t$
$2 / 3 \pi \sin 2 \pi 38000 t+\ldots$ and
$S_{2(1)}=1 / 2-2 / \pi \sin 2 \pi 38(k) t$
$+2 / 3 \pi \sin 2 \pi 380 \% 0 t$
If only the audio component is extracted. the main switching circuit output becomes: $I_{1}=F(1) \cdot S_{1}(t) \sim(1 / 2+1 / \pi) L+(1 / 2-1 / \pi) R$ $R_{1}=F(1) \times S_{2}(1) \cong(1 / 2+1 / \pi) R-(1 / 2-1 / \pi) \mathrm{I}$ The outputs from the auxiliary switching circuits hecome:
$L_{2}=K F(t) \times S_{2(t)} \simeq-K \quad(1 / 2-1 / \pi) R$ $-(1 / 2-1 / \pi) L$

and

$\mathbf{R}_{2}=-\mathbf{K F}(\mathrm{t}) \times \mathbf{S}_{1}(1)=-\mathbf{K}$
$|(1 / 2+1 / \pi)|+(1 / 2-1 / \pi) R \mid$
The combined outputs then hecome:
$I_{11}=I_{1}+I_{2}=|(1 / 2+I / \pi)-K(1 / 2-1 / \pi)| I$
I. $-\mid(1 / 2-1 / \pi|-k(1 / 2+1 / \pi)| R:$
and
$\mathbf{R}_{1}=\mathbf{R}_{1}+P_{2}=[(1 / 2+1 / \pi)-\mathbf{k}(1 / 2+1 / \pi) \mathbf{R}+$ $|(1 / 2-1 / \pi)-K(1 / 2-1 / \pi)| 1$.

From the above. it is easy to see that to remswe the " R " component from the I. output and the "l." component from the Ro output. value K must he set to equal:

$$
k=\frac{\pi-2}{\pi \cdot 2}
$$

or approximately 0.222.
The DSD circuit. therefore, cancels unwantel crosstalk components and, as a hyproduct. helps reduce residual subcarrier components in the outputs as well. By including a phase compensation circuit in the main switching diode arrangement. separation deterioration due to phase shifts be-
tween main and suh-channel signals. appearing in the higher audio frequency range, call be eliminated. 'Typically, separation well in excess of 30 dB is reached att 10 kHz using the DSD eireuit. Another improvement in performance is reduced amplitude of " ${ }^{\text {inter- }}$ ference frequency beats" sometimes catlased by the interaction of residual $19-\mathrm{kH} 7$ and 3 K.kH/ products and high frequency program Signals. Figure s shous Kenwood, new four-channel receiver, Model KR-63+0. one of many receiver and tuner molels which employ this DSD stereo decoding principles.

Direct drive turntable system

I.es than . 0 tre (weighted) wow and thut ter. and at signal-to-noise ratio of hetter than s dB (weighted) are junt two of the impressive specifications clamed for the new Sony PS-225| Direct Drive Turntable Sytem. These and other supert spees reault from using an ac servo-controlled motor which is directly coupled to the turntable. This eliminates ider wheels. belts. pulleye or any other speed-reduction schenes normally associated with turntables and record changers.

Figure h is a simplified diagram of the servo system in this unit. Motor speed is proportional to the applied ac voltage and is controlled by varying the applied voltage Em to the motor. Voltage variation is controlled by the diode bridge and the collector-emitter impedance (R_{v}) of the
power transistor.
Motor speed is converted into an ac signal by a frequency generator directly coupled to the turntable motor. A servo-amplifier compares this signal with a very stithle de reference voltage and coontrols the impedance ot the power transistor. Any error in motor peed generates a correction voltage which is then applied to the motor

A more detailed analysis of the serta aclion can be gained by examining the block diagram of lig. 7. When the main power witch is turned on. ('8 is charged through VR2. KIO, VRI and R9 when the controls are set to $33-1 / 3 \mathrm{rpm}$. Note that for 45 rpm operation. VR2 and R10 are shorted out. The voltage comparator circuit in $1(1$ is biased into conduction when (X is charged to a predetermined voltage. Av a revalt. (2)? and 24 are turned on and ath ace boltage is applied to the motor.

A frequency generator (f(i) is directly coupled to the drive motor shatt and generites an ac voltage whose frequency is proportional to the motor speed. ()1 and ()2 form at differential amplifier which increases the level ol the generated signal to that required by limiter diodes DI and D2. These diades conduct whenever barrier potential of 0.6 volt is exceeded. limiting their output signal io 1.2 volts, peak-to-peak.

I he integrated circuit ($($ Cl) which follow, contains four separate circuit elements: a flip-thon. a de balfer amplifierfphase invertcr. a sawlooth waseform generator and a
voltage comparator. The llip-flop produces square-wave outpul frequencies based upon the input-limited trigger signal. The de bufter/phase inverter amplifies and inverts the square watve signals w hich are then conberted into spike-shaped pulsers through a differentiation cilcuit (C7 and the input inpedance of the satwouth waveform generator that follows). The frequency of the sawtooth is determined by the evternatly connected time constant circuits $1(88 . R Y$. VRI, RIO and VR2).

The boltage comparator generates negattive pulses whose width is proportional to the time the simtooth voltage exceeds the reference voltage. The reference voltage is determined hy the pitch control (VR3) setting. The de butfer/phase inverter vage which follous supplies positive pulse signals to the low-pass filter circuit and bufter amplifier ()3. The low-pass filter has a sharp roll-olf charaterintic and atctsas an integrating circuit, converting the positive input pulses into a de voltage proportional to the input pulse-width. De output from the lowpass filter is applied to the base of (24 . Since
 change in input de voltage alter the conduetion of (26 which varies the voltage applied to the furntathe motor.

Waveforms appearing all various paints numbered in Fig. 7 are illustrated in Fig. 8.

Speed variation and control

If motor speed thould vatry. becoming

FIG. 7 -COMPLETE BLOCK DIAGRAM of circuits used in Sony PS-2251 direct-drive turntable system. Circled numbers refer to wavelorms shown in Fig. 8

5

NORMAL
STARTING
$12.3 \mathrm{mS} 33-1 / 3 \mathrm{rpm}(9.1 \mathrm{mS}: 45 \mathrm{rpm}$.
6

$12.3 \mathrm{mS} 33-1 / 3 \mathrm{rpm}(9.1 \mathrm{mS}: 45 \mathrm{rpm}$.

110

FIG. 8-WAVEFORMS appearing at numbered
points in the block diagram of Fig. 7.
either foo fant or loo slon. the servor system compensates and adjusts the speed. Let's ansume that the motor starts tor run foo fast. The frequency generator signal frequency increases, which results in thorter intervals hetween the pulses wed to trigger the sawfooth uaveform generator. This čathes lower-amplitude sastooth waveforms which in turn result in a shorter "ox" period for the comparator. The output wateform from the comparator then is reduced in pulse width, therehy reducing the positive hias appled to (24. A a a result, the collector impedance of (ph increases, reducing motor sped. Contersely, if the motor speed tends (o) decrease, the eollector-emitter impedance of 1 Zh is made to decrease. therehy increasing the motor speed.
Positive 12 Vde for the aystem in prowided hy the full-wate rectifier consiating of I)X and [)9. lilter čapacitors (19 . C 17 and Kener diode I)7.
Speed changeover from 33-1/3 rpm 10 45 rpm in done by changing the sutooth "avefom frequeney evernally. Since the sawtooth waveform frequency is determined hy the evternal $R\left({ }^{\prime}\right.$ time constants, a speed selector witch is connected acrow VR2 and RJO. Shorting out the two componems leadds in faster motor speed 145 rembland the swikeh is set to the open position for slower. 33-1/3 rpmoperation

A top siew of the complete turntable ascombly is shown in Fig. 9. in which the associated statically halanced wone arm and the fromt pancl upeed selector huttons and pitch control knoh are visible. Figure 10 show the undervide of the syotem. The circut hoard comtaining the servo-electronics is seen alongside the direct-drive motor housing. The actual motor used is an eddycument de motor with at cup-shaped copper rofor which generates smooth linear rotating torque. Becalase of the nature of the motor drive system. the tarntable sybtem can be used with either $5(0-\mathrm{H} /$ or 60 - H / house current. since, unlike hysteresis motors found in speddredtution sytems. the incoming power line frequeney has litte to do with the ultimate speed of the drive motor. Since some variation in strobe light effeet would tate place when switching from 50-H/ 10 foll- 1 / house esmrents, the illaninated strohe lines tisible throngh a window in the front edge of the unit are repeated for $50 \mathrm{H} / \mathrm{H}$ and differ form the see inscribed for fo Hz operattion.

R-E

FIG. 10-UNDERSIDE OF PS-2251 shows circuit board for servo-control electronics mounted adjacent to direct drive ac molor.

RADIO SHACK'S REALISTIC TRC-9 works on Channel 9 and two other channels.

Alignment of CB receiver and transmitter circuits is simple and need not require precision test instruments and a laboratory setup. Use another CB rig as your alignment equipment.

by ANDREW J. MUELLER

IF THE ALIGNMENT OF YOUR CB RADIO is not right on the button. you can have problems! Weak or noisy reception. splatter from adjacent channels, are the commonest troubles you can run into if the alignment is off. Misalignment has various causes. The first and biggest is "diddl-itus". This results from the would-be technician-armed with a handful of alignment tools-attempting to "just tweak it up a little". The rest of the causes include from normal aging. parts replacement or defective associated components.

Aligning a C B radio is easy once you become familiar with the procedure. The first thing you need to start with is a set of proper alignment tools. This is no place for metal screwdrivers or Allen wrenches. When these metal
tools are withdrawn from the coil, they can detune the circuit you have just aligned. If the tool size is not right. the slugs can be cracked or broken and will have to be replaced. The following alignment tools should cover just about every radio.
$\begin{array}{lllll}1 \text { GC } 8282 & 1 \text { GC } 8276 & 1 \text { GC } 5097 \\ 1 \text { GC } 9304 & \text { IGC } & 2520 & & \end{array}$ These can be purchased through any radio parts distributor for around $\$ 3.00$. Next you will need a 20.000 ohms per volt vom or vivm and another C B unit with a dummy load. A walkie-talkie is OK but a 5 -watt unit is better.

Referring to the schematic of SBE Capri in Fig. I, hook up the voltmeter at point A to ground. Set the meter on the 5 V dc scale. Connect the other CB radio to a dummy load, place it in the
vicinity of the unit to be aligned and set both to the same channel. Transmit and observe the meter reading on the set to be aligned. If the meter reads over 3 volts, move the sets farther apart until you get a reading of between 1 and 2 volts. Now take the proper alignment tool and adjust I. 9 through I. 4 for a peak reading on the meter. If the reading goes over 3 volts at any time, move the sets farther apart. This will make sure that you are not overloading the unit. If any of the coils will not peak. try reducing the signal input and try to retune. If this fails, you must troubleshoot the radio. More than likely you will find an open resonating capacitor or defective associated components. Once this is corrected, you can continue the alignment.

FIG.1-THE SBE CAPRI, partial schematic showing those portions on which the technician will work when aligning the transmitter and receiver. Circuits are typical of AM-only transceivers.

Made Easy

When atl of the i.f. is are aligned, the only thing left to do is to tune the fromt end. Leave the meter connected and hook an antenna to the unit. Select a quiet channel between chamnel 9 and 12. While receiving a weak signal tune 1.1 and 1.2 for maximum. Peak the receiver local oscillator coil. 1.3, for maximum reading. Then back it offabout $1 / 2$

ALIGNMENT TOOLS and kit. The suggested GC-5097 (not shown) is for K-Tran i.f.'s.
turn. Check the oscillator operation hy switching channels and noting if all of the receive crystals "tire". If they all do not. back off another $1 / 8$ to $1 / 4$ turn and check again.

This completes the alignment. We are assured that the receiver is on frequency becaluse it has been tuned to another unit that is working nomally and is on frequency

The transmitter

The last section to align is the tramsmitter. Connect an indicating type dummy load to the antenna jack. Do not use the type that uses a No. 47 lamp. but rather a unit similar to the Courier Porta-Lab. Depress the mike

switch and ohserve the output. Adjust L. 10 for maximum output. This must he done carefully to insure proper oscillator operation. Follow the same procedure as you did when 1.3 was adjusted above. Nest idjust 1.11. 1.13. and Llt for maximum sutput. When adjusting I.13. make sure that this is set so that when you talk. the output power increases. Keeping in mind that the power input is also adjusted by L.13

MESSENGER 125, a 5-channel AM rig featuring pushbutton switching.
and 1.14. the input power must be checked to not exceed 5 watts. This can be done by incerting a $0-5(0) \mathrm{mA}$ meter at point X. Take this reading in $\mathrm{m} . \mathrm{A}$ and multiply it by the voltage measured to ground at this point. The resultant figure should not exceed 5.000 mW (5 watts). If it deen, adjust 1.13 for a lower ma reading while still

THE CHEETAH is a SSB synthesizer rig. Leave frequency determining circuits alone.
maintaining upward modulation. If upuard modulation cannot be obtained within the 5-watt limit, take the set to a CB servive center for repairs.
1.15, the IVI trap, is the last aldustment to make. This is done by tuning a nearhy TV' set to chamel 2 and adjusting 1.15 for minimum TVI

This completes the alignment of the unit. While you make the above adjustmenis on a dummy load. all final adjustments mast be checked be an FCC licensed archnician. This must be done hefore the set is put on the air. It is required by the rules and regulations. and you can be assured that you did the joh right. You aloo will he avoiding a citation from the FCC .

R-F

Changes come fast in electronics.

Take a look at the race in circuit technology. In the 1960's the tubes at the left made way for the transistors at the right. Today, transistors are surpassed by the large scale integrated circuit (LSI) at the far right. This circuit, less than a quarter inch square, replaces over 6000 transistors!

There's big money to be made by the men who stay ahead of this technology race. Put yourself
ahead with NTS Home Training! You get the latest, most advanced equipment (at no extra cost). Miore solid-state units, and more advanced technology. Plenty of training with integrated circuits, too! As an NTS graduate, you enter a world of electronics you're familiar with. You have a thorough working knowledge of solid-state circuitry. You're ready to tackle bigger jobs at higher pay!

NTS COLOR AND B \& W TV SERVICING

Build and keep the largest, most advanced color TV made! Over-all solid-state design, ultra-rectangular screen, matrix picture tube, built-in self-servicing features, "Instant On," A.F.T., solid-state, 24-channel detent UHF/VHF power tuning, and much more! Also build and keep AM-SW Radio, Solid-State Radio, FET Volt-Ohmmeter, and Electronic Tube Tester. Learn trouble-shooting, hi-fi, stereo, multiplex systems, radio, color and B \& W TV servicing.
Learn sophisticated solid-state circuitry as you build this B \& W TV receiver. Lo-Silho "Superhet" Radio, FET Volt-Ohmmeter, SolidState Radio, Electronic Tube Checker, and Signal Generator. TV
and all other equipment are yours to keep.

NTS ELECTRONICS \& COMPUTER TECHNOLOGY

Build and keep this exclusive NTS Compu-Trainer. It teaches you the

same principles used in milliondollar systems. Contains 14 inte-
grated circuits! All Solid-State! You perform all wiring and patchcording. No shortcuts. No pre-wired circuit boards. Your training is complete! Also receive an FET VoltOnmmeter and a $5^{\prime \prime}$ wide-band Solid-State Oscilloscope.

NTS ELECTRONICS COMMUNICATIONS

Gain the prestige and earning power of owning an F.C.C. First Class Radio-Telephone License. Two comprehensive NTS courses cover the big opportunity field of transmitting and receiving.
You build and keep 14 kits, including this amateur phone 6-meter VHF Transceiver, NTS's exclusive 6-transistor Solid-State Radio, and a fully transistorized Volt-Ohmmeter. Also, learn 2-way radio, Citizens Band microwaves, and radar.

5-watt AM
transmitter transmitter/

NTS Home Training puts you in the lead.

NTS INDUSTRIAL \& AUTOMATION ELECTRONICS

Automation is the future of industry and you can play an important part! Learn industrial controls by training on the NTS Electro-Lab (a complete workshop). You also build and operate this $5^{\prime \prime}$ Solid-State oscilloscope. And you perform experiments that involve regulating motor speeds, temperature, pressure, liquid level, and much more. All equipment is yours to keep.

NTS AUDIO ELECTRONICS SERVICING

Learn basic sound theory-how it works in home radio, car tape
decks, stereo multiplex component systems, and more! Set up a spectacular music system. Learn about

sound distortion, amplification and control, loud-speaker baffles, problems of system installation, etc. Included is Volt-Ohmmeter, In-Circuit Transistor Tester, and Solid-State

Radio. Prepare yourself for great opportunities in the Home Entertainment Industry!

CLASSROOM TRAINING AT LOS ANGELES

You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in technical facilities. Check box in coupon below.

NATIONAL SHCHOLS

WORLD-WIDE TRAINING SINCE 1905 Resident \& Home Study Schools 4000 S. Figueroa Street
Los Angeles, California 90037

APPROVED FOR VETERAN TRAINING

Accredited Member: National Association of Trade and Technical Schools; National Home Study Council.

build a BLITZMETER

by JAMES A. GUPTON
PHOTOGRAPHIC EDITOR

WHAT PHOTOGRAPHER WOULD EVER attempt to make an exposure without first measuring the light with a meter? What photographer would attempt to process film without first measuring the temperature of his chemical solutions? Yet, put an electronic photoflash in the hands of almost any photographer and he immediately relies on guesswork! His standard exposure meter is valueless for measuring the split-second flash of the electronic photoflash units. He is forced to guess his exposure by the hit-or-miss device known as the "Guide Number."

The GN is a flash exposure factor by which the supposed exposure value can be determined by dividing the GN by the distance from the camera to the subject. While this can be reasonably accurate if . . . you are accurate in your mathematics, distance value and . . . your flash unit is fully charged. But what happens to the GN exposure factor if you are wrong or your flash is fired before it reaches full charge? Don't chance it! For just a few dollars for components and an hour or two of time you can have a reliable exposure meter that works on
the reflected light from your electronic photoflash unit to provide you with accurate flash exposure data.

PARTS LIST

All resistors are $1 / 4$-watt 10%
A1-4,700 ohms
R2-52 ohms
R3- $10,0000 \mathrm{hms}$
R4-1,000 ohms
R5-22 megohms
R6- 150 ohms
A7 $-27,000$ ohms
R8- 75,000 ohms Mallory MC- $1 / 2,1 / 4$ watt
R9-100,000 ohms IRC CTS-X201 carbon trimmor
R10-27,000 ohms.*
$\mathrm{C} 1-0.02 \mu \mathrm{~F}$ ceramic. 10 V
$\mathrm{C} 2-100 \mu \mathrm{~F}$ tantalum, 10 V

C3-75 $\mu \mathrm{F}, 30 \mathrm{~V}$
PC-Motorola HEP-312, CL902, or CL903
Q1, Q2-Motorola HEP-729, MPS-3710, 2N2219
Q3-Motorola HEP-F2004, HEP-2005, 2N4303, 2N4351, 2N5458
S1-switch spd, miniature type Battery-22.5 V.
Cabinet-Bud $4 \times 21 / 4 \cdot 21 / 4$
Knob-1/2-in. dia. aluminum, $1 / 6$-in. shaft Meter-100 microampere, $2^{1 / 2}$-in

- HEP numbers and acceptable substitutes
- used only to permit R-10 to adjust meter above or below zero.

FIG. 1-THE BLITZMETER: It uses only three transistors and one photecell to measure the shortduration flash to an electronic unit.

How it works

The "Blitzmeter" is appropriately titled-the brief duration of the electronic photoflash parallels that of the bolt of lightning in a summer thunderstorm. "Blitz" is the German word for "lightning." The Blitzmeter can be sectionalized into three circuits: The photo detector; the trigger circuit; the metering circuit.

The photo detector has a very high resistance to ambient light, even daylight on a bright and sunny day.

FIG. 2-PRINTED CIRCUIT LAYOUT is shown here full size ($2 \times 2-9 / 16 \mathrm{in}$.).

INTERIOR VIEW OF A BLITZMETER. This model uses point-to-point wiring on a perforated board mounted directly on the terminals of the panel meter.

This high resistance keeps the trigger transistor circuit biased off until the energy from an electronic photoflash is received. The energy from the photoflash drops the photo detector's resistance enough to "pulse" the trigger circuit that causes transistor Q2 in Fig. 1 to charge capacitor C 2 to a value that depends on the amount of bias change in Q1, which is controlled by the total energy of the photoflash light reaching the photo detector, PC. The charge in C 2 is then measured by FET Q3 and indicated on the meter. The high input resistance of Q3 prevents discharge of C 2 ; it becomes necessary to connect R4 to ground to provide a discharge path. R8 adjusts the sensitivity of the Blitzmeter for various film speeds and R10 is used to null or zero the meter. Note the double function of SI. The spdt action turns on the power and-in the off positiondischarges Cl to ground through R4.

The Blitzmeter may be built on a perforated or Vectorboard breadboard or with a printed circuit. Both methods are used in the models that illustrate the construction. The key component is the photo detector. The Motorola HEP-312 npn silicon phototransistor is ideal for this use. It not only has the necessary high ambient light resistance to keep the trigger circuit in the off condition; it has an epoxy lens, which tends to increase its sensitivity by directing maximum light.

There are limited substitutes for the HEP-312, such as the Clairex CL902 or CL903. You might also find that some npn transistors in the TO-S can will work when the top of the can is cut off. While there may be other suitable substitutes, the author has tried these and found them workable in the Blitzmeter circuitry. The remaining components may be substituted without hesitation. However, should the action of the meter prove

TABLE: FILM SPEED AND F-STOPS

FILM SPEED [ASA]	50 WATT-SECOND Guide Number	100 WATT-SECOND Guide Number	f-STOP FOR		
			5tt	10tt	20 tt
40	55		$f 11$	15.6	f 2.8
		76	f 16	18	14
65	70		f 16	18	14
		95	f 22	$18+$	f 5.6
125	95		f 22	$18+$	15.6
		125	f 22	f 11	f 6,3
165	110		f 22	$f 11$	16.3
		145		f 16	$f 8$
400	170			f 16	f $8+$
		250		122	f 16

erratic or it is difficult to maintain a fixed reading, look to the possible substitution of the FET as the cause.

Callbrating the meter

The "Blitzmeter" reads only the photoflash reflected light from the subject and indicates the light value by the meter indication at which the pointer comes to a stop. Calibration is the process of translating the meter indication into usable camera lens f stops and including calibrating potentiometer R8's settings as film speed values in ASA numbers. To assist in calibrating your meter, the Table compares 50 and 100 watt-second photoflash units for guide numbers, film speed, and for typical f-stop values for lens to subject distances.

To calibrate your Blitzmeter, place the meter 5 feet from a neutral gray wall or cloth and discharge the photoflash toward the wall from a position above the Blitzmeter. (Adjustsensitivity control R8 for maximum resistance.) Now adjust sensitivity control R8 to give full-scale deflection of your meter. Identify this point as f 16-or if your camera lens stops down to f 22, use that value. Next, move Blitzmeter and flash to a distance of 10 feet and repeat the process. Keep the sensitivity control R8 at the initial adjusted setting. The meter pointer will now give a lower indication. Mark it and label it f 8 (or f 11). Now move both units to a distance of 20 feet and repeat the process. Mark the new meter indication $f 4$. This will calibrate your meter for one film speed only. Place a marker at the sensitivity control and identify by ASA number, using the Table as a guide.

To calibrate for other film speeds, you need only repeat the step at which the meter indicated full-scale pointer movement. At full scale, adjust sensitivity control to move pointer from f 16 (or f 22) to the next lower fstop. In this case, f 11. Mark the sensitivity control for this setting with the next higher ASA number. Now again adjust sensitivity control for the next lower f-stop and mark the setting with the next higher ASA number. This method will enable you to calibrate your Blitzmeter accurately for any specific film speed, while the meter readings will automatically compensate for lens-to subject distance and indicate the proper f-stop setting for your lens.

ACROSS
1 Spin below required speed
5 Electric guitarist's burden
8 Component of hi-fi set
13 Yachting events
15 Trued so all paris are correctly adjusted
17 External power supply not needed by Koss electrostatic type stereophones
18 System receiving simultaneous signals on one frequency
20 Loudspeaker hookup
21 Distortion from slowed record speed
23 Unit of music
24 Clear throat
25 "Is Anybody Going
to Antone?"
26 Tape tear
28 Chinese
30 Storage place
32
Ababa
34 Fear of foreigners: phobia
36 Used to be
37 Home of the brave
39 Bass loudspeaker
41 Blunder
42 Macaws
44 Armadas
47 Speak without script
49 Skip one dance: 2 words
50 Eat in style, perhaps to music!
52 Invented Stereophones
55 Crisply vigorous
56 Radio communications for "OK, will do."
58 Philippine Negrito
60 Symbol for rhodium
61 Chemical suffix for electro negative element of a compound
62 Aural coverings of Stereo phones
65 Harem room
68 Roman six
69 Stereo-timestwo sound
71 Enclose equipment in covering material
73 Schubert's 'The
Exact path King
74 Exact path of radio signal
75 Tenant
76 Teletypewriter: Abbr
77 Capri, for example

DOWN
1 Attract magnetically
2 Tape device for getling music
3 Automatic Gain (Control)
4 Slangy leg
5 Book of maps
6 Quadraphonic system encod ing iwo channels lor broad cast, decoded into tour by listener equipment. Or, in discrete!
7 Twenty-third Greek letter 8 Story
9 Council of Moslem scholars
10 Nothing doing!
11 Halt an em
12 Kind of bills Koss can save you
14 Saturday night watering place
16 Music to wiggle to
19 Record player, for short
22 Responsive to music highs and lows: 2 words
25 The Koss contribution to privare listening
27 It's a dandy'
29 Radio fare, besides music
31 Treble loudspeaker
32 Consumed
33 Achieved by fluid filled stereophone ear cushions
35 Grunts from people punched in the stomach
38 Scandinavian man's name
400 ther side of hit record
43 On the ship
45 Ram, male sheep
46 Untidy place
48 Low mark, in school
50 Sound transmitter in the earcup
51 Antiseptic for bruises
53 Quality is the open \qquad of success
54 British royal house
57 Reclaim for further service
59 Put on, or use a method
63 Amer. Assoc. of Elec. Engrs.
64 Quien!
66 Radio indication panel
67 Peak of perfection
69 Arabian narcotic shrub
70 Kimono sash
72 Credit note: Abbr.

Can anyone do what you do any better?

Probably not. All things considered you do what you do pretty doggone well. After all, no one has taken your job. And you're eating regularly. But...

But have you ever considered what doing your job just a little better might mean?

Money. Cold hard coin of the realm.

If each of us cared just a smidge more about what we do for a living, we could actually turn that inflationary spiral around. Better products, better service and better management would mean savings for all of us. Savings of much of the cash and frayed nerves it's costing us now for repairs and inefficiency.

Point two. By taking more pride in our work we'll more than likely see America regaining its strength in the competitive world trade arena. When the balance of payments swings our way again we'll all be better off economically.

So you see-the only person who can really do what you do any better is you.

America. It only works as well as we do.

TECHNICAL TOPICS

Two of this month's selected circuits are for test instruments-a FET voltmeter and a shorted-turns tester. The others include an unusual regenerative detector; a random-order flasher and a kink for mobile radio operators.

by ROBERT F. SCOTT

technical editor

HIRST. LEI ME THANK IHOSI HHO answered my requests for help in selecting material for future Technical Topics columns. I am especially gratteful for your kind remarks and for the suggestions that I hope will enable me to tatiker future columns to fit your needs. Most of you suggested broad subjects you want to see covered. This is what I need-ideas that can be developed so they are of interest to the greatest number of readers. Technical Topics tries to present workable ideas that you can use directly or adapt to meet more specitic requirements.

A few of gou wanted answers to specific problems. We don't want Technical Topics to become a Readers Question Box. If fou need immediate help with a specific problem. write to the Technical I:detor or to the Appliance or Service Clinis. Well do our best to help you.

Several readers wanted a circuit for four or more neon lamps that flash in a randem order. The circuit to be used in C"hristmas decorations. games. "do-nothing" boxes. clearance markers. docking beacons. ect. Ihe circuit in Fig. I should do the trick. The flashing rate is determined by the vallues of R and $($.

More on the unusual superregenerator

In October 1969 we described an unusatal superregencrative receiver dereloped by Ted Hart. The receiver uses a multivibrator quench-frequenes oscillator for a crystal-controlled whe oscillator. A couple of months carlier (August. 1969. page 48) Frank Tooker described a novel squarewate generalor using a pair of FE Is connected as a multivibrator.
(Charles Derven, of Poultney. Ví. has come up with an FEl version of Ted Hart's superregencrator using 2N3819 FIT's (sec lig. 2). Coil 1.1 consists of 32 turns of No. 26 conameled wire closewound on a $1 / 4-i n c h$
plastic soda straw (an idea copied fromi 1. Queen's "Pockel VHF Receiber". January 1961 issue). 1.2 consists of 3 turns wound around the $B+$ end of LI. The tuning capacitor was made by removing all except four rotor and four stator plates from an inexpensive $365-p{ }^{\circ}$ tuning capacitor.

Ar. Derven reports receiving sev-
eral Latin-American stations while using a 36 -inch whip antenna. He added that luning was critical and the smooth hiss indicating superrengeneration could be obtained only when the luning capacitor was nearly wide apen. Cosing the capacitor further caused the circuit to whistle.
(lt sounds like this circuit now

$R 1-R 7=220 \mathrm{~K}$ to 2.2 MEGS
C1-C6 = 0.1 to $1 \mu \mathrm{~F}$ LOW LEAKAGE TYPE
FIG. 1-RANDOM-ORDER FLASHER is a group of neon lamps interlocked as multivibrators. It can be used as a highway obstruction marker, docking beacon or do-nothing toy for tots.

FIG. 2-UNUSUAL SUPERREGENERATIVE DETECTOR uses FET's connected as multivibrator quench oscillator. Designer reports receiving South American shortwave stations.
needs a regeneration control. One possible way is to try replacing C2 with a variable capacitor of much lower capacitance. say 365 pF . Another possible approach is to feed the gate of Q1 from a tertiary coil of a few turns around LI. One end of the coil would be grounded or returned to ground through a variable capacitor. The other end goes to Q1 through (2.)

Power supply hang up

A reader in Crescenta. Calif.-his signature was not clear-ran into trouble when he decided to modify his bench power supply along the lines of the dual supply in the November 1972 issue. He found the CA305s IC had been discontinued and replaced by the CA 3085 A and CA3085B IC's.

He used the $5.6-\mathrm{ohm}$ resistor between pins 1 and 8 as specified in the CA3085 data sheets instead of the 45 ohm resistor and 1000 -ohm pot combination used in the original dual power supply. He reports that the supply works quite well. A TO-5 type heatsink on the IC keeps it close to room temperature.

Sensitive squelch circuit

The squelch circuit in Fig. 3 can be added to most FM monitor receivers. It is used in Zenith's RD52 AMFM receiver. The circuit is switched into operation when the bandswitch is set to the PS (public service) position for receiving transmissions from U.S. Weather Service, fire police, public utilities and other services operating between 148 and 174 MHz .

Transistors Q1 and Q2 form the carrier-operated circuit that controls conduction through Q3. the audio preamplifier and switch used for publicservice audio. When Q3 turned off, it mutes the receiver: when this transistor is turned on. it amplifies the incoming audio signal.

When the sotrich control arm is advanced toward the B-end. a point is reached where Q1 is biased to cutofl and Q2 is biased on. The voltage on Q2's collector is transferred through D3 to Q3's base, turning off the audio and efficiently silencing the receiver.

When an incoming signal appears at the collector of the i.f. output stage. a portion is applied to a voltage doubler consisting of D1 and D2. The voltage-doubler output develops across C3 and is applied to the base of Q1 through the 1000 -ohm decoupling resistor. When the voltage is high enough to over-ride the fixed cutoff bias from the soteren control. Q1 turns on. Q2 is turned off and Q3 turns on. thereby passing the audio signal through the handswitch to the volume control and the balance of the audio circuits.

Shorted-turns tester

Shorted turns in a TV flyback transformer. deflection yoke, width coil or other inductors in the deflection circuit can produce annoying symptoms that can be difficult to track down. This is particularly true when the shorted condition does not cause charring or overheating that can be detected easily by sight or smell.

The shorted-turn detector in Fig. 4. described originally in Electronics Ausiralia, can be tucked into the tube caddy so coils with shorted turns can be isolated and replaced without having to pull the set to the shop for service.

QI is a Colpitts oscillator using a standard horizontal "ringing" or "sinewave" coil. Q2 is a transistor voltmeter that monitors the oscillator output. The 470 -ohm emitter resistor was selected to limit current through the meter to less than 1 mA when the oscillator is developing maximum out-put-the 1000 -ohm pot will be set for minimum resistance.

When the device is first turned on the meter reads around 0.1 mA , indicating that the oscillator is not operating. As the pot resistance is reduced, the oscillator starts operating and the meter reading jumps to about 0.4 mA . Shorting the test leads causes the meter reading to drop; indicating that the oscillator has been loaded down and has stopped oscillating.

To test a suspected inductor or transformer, set the pot so the meter reads about 0.6 mA and then connect the test leads. With this level of activity. the oscillator will not be affected by a high-impedance shunting the coil under test but will show up a shorted turn or a low-impedance shunt path in the circuit.

Familiarize yourself with the tester by checking the windings of a good flyback and then, with the test leads across one winding, thread a short piece of wire around the core and connect the ends together and watch the meter. You should easily perceive the difference.

FIG. 3-EFFECTIVE SQUELCH CIRCUIT is from Zenith's RD52 receiver. Circuit cuts in automatically when receiver bandswitch is set for monitoring the 148-175-MHz range.

FIG. 4-SHORTED TURNS IN TV INDUCTORS are easy to locate with this tester. Oscillator is loaded down so meter reading drops when shunted by coll or transformer with shorted turns.

Simple FET voltmeter

The voltmeter in Fig 5 wats taken from a Mullard Eiducational Projects in Electromics booklet. Input resistance is at least 10 megohms on its eight de voltage ranges. It uses an N-channel FET operating as a source follower. The voltage being measured is applied across the voltage divider consisting of 10 megohms in series with a shunt re-sistance-selected by the rancif switch-between the FET gate and ground. The shunt resistance selected is such that the voltage between FET gate and ground is 200 ml for fultscale voltage on all ranges. The inherent high input resistance of the FI:T and the negative teedback across the unbypassed source resistor insure that there is never less than 10 megohms in parallel with lower end of the input voltage divider. even on the lowest range.

Potentiometer R24 sets full-sciale detlection on the $250-\mathrm{ml}$ range and compensates for the difference in transfer conductance - roughly gain-of different FET: All other ranges atre adjusted for full-scale detlecion by using the preset potentioncters in series With the shunt leg of the input voltage dividers. The $250-0 h m$ wireWound[zeroadjust| pot is mounted on the
front paneland used tozerothe neter with the input leads shorted.

The FET voltmetercan be calibrated using an adjustable power supply and a vivn or digital voltmeter across the FET meter's input terminals or by using the scheme in Fig. 6. With thissetup. ade microammeter measures the current through R2, a precision resistor. The voltage applied to the FET is then R2 31. The calibration procedure

1. Switch to the $250-\mathrm{mV}$ range, set R24 for minimum resistance. Short the inputterminals togetheranduse $R 26$ to 2 ero the neter. Remove the short from the input terminals.
2. Apply $\mathbf{2 5 0} \mathbf{m V}$ to the input and adjust for full-scale deflection.
3. Repeat steps 1 and 2 until the meterreadscorrectlyat ceroind full-scale.
4. Switch to the $500-\mathrm{mV}$ range, short the input terminals and check forzerodeHectionon the meter. If not. repeat steps I and 2. Remove the short, apply 500 ml to the input and adjust $R 8$ for full-scale. I oo not itdjust R24.
5. Switch to the other rangesand apply full-scale voltages to the inputand adjust R11.R16, R18. R20 and R22 for lullscale detlection onthe appropriate range.

Battery isolation scheme

A ham reader asked lor a circuit that

FIG. 5-DC VOLTMETER USES FET to give it a very high input impedance on its eight dc ranges. Construction and calibration are simple and straightlorward.

FIG. 6-METER CALIBRATOR develops reterence voltage by controlling the current flowing through a precision resistor.
would permit him toadd asecond battery tohiscar. The a uxiliary battery is for operating only the 2 -way radio equipment. Both batteries are to be charged from the car's generator or alternator.

Digging into my files. I came up with the circuit in Fig. 7. It appeared in ElecIronics Ausiralia. In thiscase, four 25-ampere silicon diodes of the type used in automobile alternators are used to isolate the two batteries.

FIG. 7-DUAL BATTERIES in car with 2-way radio insure more reliable radio operation and quick and easy starting.

The diodes are Mullard BYX2l200R's (the "R"sultix indicates reverse polarity-the amode is connected to the (ase) pressed into at 6 -inch length of Mullard type 350)6(heatsink. The heatsink itself is used as the common anode connection. Equivalent silicon diodes atre the HFP ROI22-R and similat types. If a suitable heat sink is not atailable use stud-mount diodes.

Well that's it for now. Keep those cards andlelters coming. (iine mean idea ats to how much text is needed with the average diagram. The space allonted tor Fech Iopics is limited so if we cen cut down a little on text we cansqueese in an extra diagram or two. But. remember that this may mean cutting down on the construction tips, calibration aids and "hew-it-works" dope that live been including. Letishearfomyou.

R-E

NEXT MONTH

Three special articles highlight developments in solid-state electronics. We start with an article on a new kind of color TV that has special circuit features we know you want to read about. Then Don Lancaster explores the world of the ROM (Read Only Memory). Last, there's an IC Gyrator-that's a device that behaves like an inductor but has no coil. Don't miss the February issue.

CRE-The only home-study college-level training

program which gives you in electronic circuit design

 only CREI offers you a complete

 only CREI offers you a complete

 Laboratory to speed your learning

 Laboratory to speed your learning}

Electronic circuit design—source of all new development in the application of electronics to new products and services. Without this skill we would be unable to monitor the heartbeat of men in space. Without it, the computer revolution would never have occurred. And we would have yet to see our first TV show. Yet, only CREI teaches electronic circuit design at home.

ELECTRONIC CIRCUIT DESIGN

A key skill which paces our nation's progress in countless fields-from pollution control to satellite tracking to modern medicine to exploring the ocean's depths. And beyond. A skill which you must have to move to the top in advanced electronics.

CREI programs open up

new worlds of opportunity for you.

In addition to electronic circuit design, CREI provides you with a full advanced electronics education in any of thirteen fields of specialization you choose. Communications, computers, space operations, television, nuclear power, industrial electronics-to mention just a few of the career fields for which CREI training is qualifying. With such preparation, you will have the background for a career which can take you to the frontiers of the nation's most exciting new developments. And around the world.

This free book can change your life. Send for it.
If you are a high-school graduate (or equivalent) and have previous training or experience in electronics, then you are qualified to enroll in a CREI program to move you ahead in advanced electronics.

Send now for our full-colcr, eighty page book on careers in advanced electronics. In it, you will find full facts on the exciting kinds of work which CREI programs open up to you. And full facts on the comprehensive courses of instruction, the strong personal help, and the professional laboratory equipment which CREI makes available to you. All at a surprisingly low tuition cost.

And when you have it, talk with your employer about it.
Tell him you're considering enrolling with CREI. He'll undoubtedly be happy to know you are planning to increase your value to him. And he may offer to pay all or part of your tuition cost. Hundreds of employers and government agencies do. Large and small. Including some of the giants in electronics. If they are willing to pay for CREI training for their employees, you know it must be good.
Send for Advanced Electronics today. You'll be glad you did.

CREI Dept. E. 1401 E
3939 Wisconsin Avenue Washington, D.C. 20016
Rush me your FREE book describing my opportunities in advanced electronics. I am a high school graduate.
Name Age

Address
City \qquad State \qquad ZIP \qquad
If you have previous training in electronics, check here \square

CAPITOL RADIO
ENGINEERING INSTITUTE Employed by \qquad
Type of Present Work

Step-by-step TV Troubleshooters Guide

by STAN PRENTISS

IF DRS. BRATTAIN, BARDEEN, AND Shockley had to sit down and troubleshoot some of our modern communications equipment, they might have momentary second thoughts about their invention of the transistor in 1947. For in 1973, solid-state engineering of consumer electronics is complex indeed. Take, for instance, the switched low-voltage power supply. Motorola had its TS. 938 over two years ago (June 1971). Zenith followed with their EC45, EC58 series with loosely wound primary-secondary coils, where the secondary is shunted by several microfarads of capacitance and core-saturated. It regulates respectably from about 95 to 135 or so volts ac and maintains short-circuit resistance for 10 or more seconds before popping the circuit breaker.

The switched power supplies may
not have quite the broad voltage range of the capacitor-shunted secondary types, but their regulation will be somewhat more precise. This year both U.S. and Japanese appear to be moving towards such low-voltage sources.

How about the service technician? What does he do when there's power but no high voltage; no high voltage and no power; sound and no high voltage; set blows fuses; power is applied and smoke spirals? Suppose, for instance, you have problems with the newest Panasonic or Sony? Delivering the same end product, in design and execution you'll find them totally different.

Panasonic ETA-2 Chassis

This is a modern group of 19 and 25 -inch receivers (models CT-701, CT252 through CT-254) with an almost
completely modularized chassis-six major plug boards, and more, plus 40 transistors, six integrated circuits and 51 diodes. IC's include aft, sound detection and amplification, color processor, subcarrier regenerator, and chroma demodulator; as well as a video jungle circuit containing agc, noise canceller, abl (automatic brightness limiter), sync separator, and ist video amplifier. The power supply "S" board is a plug-in on the right wing (next to the high voltage), while all signal and sync circuits are on the left. The block diagram in Fig. 1, along with the schematic of Fig. 2, shows the signal flow.

The bridge rectifier (D801 through D804) picks up incoming ac from the power line. The pulsating dc output of the rectifier is smoothed by filter choke L80] to some extent for the $115-\mathrm{V}$ switching regulator.

FIG. 1 (left)-BLOCK DIAGRAM shows signal flow in the low-voltage power supply in Panasonic's ETA-2 chassis. POWER SUPPLY SCHEMATIC (FIG. 2, on previous page) shows clicult complexlty. FIG. 3 (above)-Y1 and Y2 are anode and cathode waveforms, respecIlvely, of TR805 In FIg. 1. FIG. 4 (below)SONY'S SWITCHED SUPPLY.

At 140 V p-p, this same waveform also couples through saw-tooth generator TR801, is inverted and converted to a sawtooth by $\mathrm{R} 806, \mathrm{R} 808$, and C807 whose inverted p-p voltage is now only 12. TR802 now does some clipping, while pulse amplifier TR803 again inverts the D806-clamped waveform and puts it through transformer T801 as a trigger pulse. This transformer triggers the SCR gate for longer or shorter periods so its current and voltage develop the necessary 115V regulated output. Active power filters (apf) TR806 and TR85 I now take over and complete the de smoothing operation, along with large filters C810 and C853. Overall filter action for this power supply, then, is the beta of the transistors times the filter ca-pacitance-forming a powerfully active filter indeed.

Regulating action for Panasonic's

supply is generated by feedback through divider resistors R815, R817. and $+115-\mathrm{V}$ adjust R816. TR804 establishes a reference through Zener D809 and temperature compensation diodes D807 and D808. Changes in output voltage induce TR804 to conduct proportionately, driving clipper TR802 more or less and delaying or expanding the drive waveform's duration through pulse amplifier TR803, producing greater or smaller output potentials through the TR805 115-V regulator. Fig. 3 shows the waveforms at two points in the circuit.

Sony KV-1722

Sony's new receiver (Fig. 4) is a 17-inch, 114 -degree deflection Trinitron type in a compact cabinet with six IC's, 26 transistors, 33 diodes, and three gate controlled switches (GCS's) in the power supply and horizontal output-and don't forget them. The IC's include aft, sound if., demodulation, and amplification; the complete video i.f., detector, sound detector and driver, automatic noise canceller (anc). i.f. and rf agc and video drive: com-

plete subcarrier regenerator with automatic color killer (ack). automatic chroma control (acc), burst amplifier. color and hue amplifiers, and $3.579,545-\mathrm{MHz}$ color sync oscillator: the chroma demodulator with sharpness acr, a luminance amplifier, and blanker; and a deflection chip with sync amplifier, afc gate, horizontal oscillator and protect circuit, vertical oscillator, buffer, and horizontal pre-amplifier.

The power supply-in which we're interested-is a separate board mounted on the back of the receiver with one ac (F601) and one de (F602) fuse between the entire receiver and its power line. D601 and D602 are full-wave doubler rectifiers that alternately charge C604, and C606, so that output is 310 V (303 V loaded) of relatively smooth dc. D608 is now ready to protect against too much sudden voltage at the junction of R621 and R622. and GCS starter Q602 now becomes active through divider resistors R605 and R606. This gated switch conducts momentarily through D605. supplying immediate de for the col-

FIG. 5-A QUICK CHECK FOR GCS'S
lectors of the entire group of current drivers, pulse-width modulators, and error-evp (excess voltage protector) detectors and amplifiers plus vertical and horizontal circuits as well. Both the horizontal oscillator and outputs now start and the regular 19-V supply kicks in through the $19-\mathrm{V}$ rectifier connected to a winding of the horizontal output transformer. Zener D610 then conducts and turns on Q610

R-E's Substitution guide for replacement transistors

PART XI
compiled by ROBERT \& ELIZABETH SCOTT

ARCH-Indicates the Archer brand of semiconductors sold only by Radıo Shack and Allied Radıo stores. Allied Radio Shack, 2725 W. 7th St.. Ft. Worth. Texas 76107

DM-D. M. Semiconductor Co., P.O. Box 131. Melrose, Mass. 02176

GE-General Electric Co.. Tube Product Div.. Owensboro, Ky. 42301

ICC-International Components. 10 Daniel Street. Farmingdale, N.Y. 11735
IR-International Rectifier. Semiconductor Div., 233 Kansas St., EI Segundo. Calif. 90245
MAL—Mallory Distributor Products Co. 101 S. Parker. Indianapolis. Ind. 46201

MOT-Motorola Semiconduciors. Box 2963. Phoenix. Arız. 85036

RCA-RCA Electronic Components. Harrison. N.J. 07029
SPR-Sprague Products Co.. 65 Marshall St.. North Adams, Mass. 01247
SYL-Sylvania Electric Corp., 100 1st Ave. Waltham. Mass. 02154
ZEN-Zenith Sales Co.. 5600 W. Jarvis Ave. Chicago. III. 60648
Radio-Electronics has done its utmost to insure that the listings in this directory are as accurate and reliable as possible: however, no responsibility is assumed by Radio-Electronics for its use. We have used the latest manufacturers material avalable to us and have asked each manufacturer covered in the listing to check its accuracy Where we have been supplied with corrections, we have updated the listing to include them. The first part of this Guide appeared in March 1973

	ARCH	DM	G-E	ICC	R	MAL	MOT	RCA	SPR	SYL	ZEN
2 N 2482	RS276-2002	T-641	GE-54	ICC-641	TR-08	PTC 108	HEP-641	SK 3010	RT-122	ECG 103	ZEN 315
2N2483	RS276-2009	T-50	GE-18	ICC-729	IRTR-51	PTC 121	HEP-729	SK 3122	RT-102	ECG 123A	ZEN 115
2N2484	RS276-2009	T-50	GE-63	ICC-S0007	IRTR-21	PTC 121	HEP-S0007	SK 3122	RT-102	ECG 123A	NA
2 N 2487	RS276-2003	T-3	GE-9	ICC-3	NA	PTC 107	HEP-3	SK 3006	NA	ECG 126	ZEN 30
2N2488	RS276-2003	T-3	GE-9	ICC-3	NA	PTC 107	HEP-3	SK 3006	NA	ECG 126	ZEN 301
2N2489	RS276-2003	T-3	GE-9	ICC-3	NA	PTC 107	HEP-3	SK 3006	NA	ECG 126	ZEN 301
2N2490	NA	T-233	GE-4	ICC-233	NA	PTC 106	HEP-233	SK 3012	NA	ECG 105	ZEN 327
2N2491	NA	T-233	GE-4	ICC-233	NA	PTC 106	HEP-233	SK 3012	NA	ECG 105	ZEN 327
2N2492	NA	T-233	GE-4	ICC-233	NA	PTC 106	HEP-233	SK 3012	NA	ECG 105	ZEN 327
2N2493	NA	T-233	GE-4	ICC-233	NA	PTC 106	HEP-233	SK 3012	NA	ECG 105	ZEN 327
2N2494	RS276-2003	T-3	GE-9	ICC-3	NA	PTC 135	HEP-3	SK 3006	NA	ECG 126	ZEN 301
2N2495	NA	T-2	GE-9	ICC-2	NA	PTC 107	HEP-2	SK 3006	NA	ECG 160	ZEN 300
2 N 2496	NA	T-2	GE-9	ICC-2	NA	PTC 107	HEP-2	SK 3006	NA	ECG 160	ZEN 300
2N2497	NA	NA	NA	NA	NA	NA	HEP-803	NA	NA	NA	NA
2N2498	NA	NA	NA	NA	NA	NA	HEP-803	NA	NA	NA	NA
2N2499	NA	NA	NA	NA	NA	NA	HEP-803	NA	NA	NA	NA
2N2500	NA	NA	NA	NA	NA	NA	HEP-803	NA	NA	NA	NA
2N2501	RS276-2009	T-50	GE-17	ICC-50	IRTR-21	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	ZEN 100
2N2509	NA	T-714	GE-18	NA	NA	PTC 125	HEP-S0005	SK 3045	RT-110	ECG 154	NA
2N2510	NA	T-53	GE-20	NA	NA	PTC 123	HEP-S0001	SK 3045	RT-110	ECG 154	NA
2N251	NA	T-53	GE-20	NA	NA	NA	HEP-S0001	NA	NA	NA	NA
2N2512	NA	T-636	NA	NA	TR-17	PTC 107	NA	NA	NA	ECG 160	NA
2N2514	NA	T-714	GE-18	NA	TR-25	PTC 121	HEP-S3011	NA	NA	NA	NA
2N2515	NA	NA	NA	NA	NA	PTC 121	HEP-S3011	NA	NA	NA	NA
2N2516	NA	NA	NA	NA	NA	PTC 121	HEP-S3011	NA	NA	NA	NA
2N2517	NA	T-714	GE-18	NA	NA	PTC 125	HEP-714	NA	NA	NA	NA
2N2518	NA	NA	NA	NA	NA	NA	HEP-714	NA	NA	NA	NA
2N2519	NA	NA	NA	NA	NA	NA	HEP-714	NA	NA	NA	NA
2N2520	RS276-2009	T-53	GE-18	ICC-53	IRTR-25	PTC 121	HEP-53	SK 3122	RT-102	ECG 123A	ZEN 102
2N2521	RS276-2009	T-53	GE-63	ICC-53	IRTR-25	PTC 121	HEP-53	SK 3122	RT-102	ECG 123A	ZEN 102
2N2522	RS276-2009	T-53	GE-63	ICC-53	IRTR-25	PTC 121	HEP-53	SK 3122	RT-102	ECG 123A	ZEN 102
2N2523	RS276-2009	T-53	GE-18	ICC-53	IRTR-25	PTC 121	HEP-53	SK 3122	RT-102	ECG 123A	ZEN 102
2N2524	RS276-2009	T-53	GE-63	ICC-53	IRTR-25	PTC 121	HEP-53	SK 3122	RT-102	ECG 123A	ZEN 102
2N2525	NA	NA	NA	NA	NA	NA	HEP-714	NA	NA	NA	NA
2N2526	NA	T-627	NA	ICC-627	TR-27	PTC 122	HEP-627	NA	NA	ECG 127	NA
2N2527	NA	T-234	GE-25	ICC-234	TR-27	PTC 122	HEP-234	NA	NA	CG 127	NA
2N2528	NA	T-644	GE-25	ICC-644	TR-27	PTC 122	HEP-644	NA	NA	ECG 127	NA
2N2529	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 132	HEP-50	SK 3124	RT-102	ECG 123A	ZEN 100
2N2530	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 132	HEP-50	SK 3124	RT-102	ECG 123A	ZEN 100
2N2531	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 132	HEP-50	SK 3124	RT-102	ECG 123A	ZEN 100
2N2532	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 132	HEP	SK 3124	RT-102	EG 123A	ZEN 100
2N2533	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 132	HEP-50	SK 3124	RT-102	ECG 123A	ZEN 100
2N2534	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 132	HEP-50	SK 3124	RT-102	ECG 123A	ZEN 100
2N2537	NA	T-714	GE-18	NA	IRTR-25	NA	HEP-S3001	NA	NA	NA	NA
2N2538	NA	T-714	GE-18	NA	IRTR-25	NA	HEP-S3001	NA	NA	NA	NA
2N2539	RS276-2009	T-50	GE-20	ICC-50	IRTR-51	PTC 136	HEP-50	SK 31	RT-102	ECG 123A	ZEN 100
2N2540	RS276-2009	T-50	GE-20	ICC-50	IRTR-51	PTC 136	HEP-50	SK 3122	RT-102	ECG 123A	ZEN 100
2N2541	NA	T-255	GE-53	NA	NA	NA	HEP-238	NA	RT-127	ECG 176	NA
2N2551	NA	T-706	GE-27	NA	IRTR-78	PTC 117	NA	NA	NA	NA	NA
2N2564	RS276-2006	T-238	GE-3	CC-238	NA	PTC 102	HEP-238	SK 300	RT-120	ECG 102	ZEN 329
2N2565	RS276-2006	T-238	GE-3		TR-05	PTC 10	HEP-2	SK 30	RT-12	ECG 102	ZEN 329
2N2566	NA	T-239	NA	ICC-239	NA	NA	HEP-239	NA	NA	NA	NA
2N2567	NA	T-239	NA	ICC-239	NA	NA	HEP-239	NA	NA	NA	NA
2N2569	RS276-2009	T-50	GE-62	ICC-50	IRTR-21	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	ZEN 100
2N2570	RS276-2009	T-50	GE-62	ICC-50	IRTR-21	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	ZEN 100
2N2571	RS276-2009	T-50	GE-20	ICC-50	IRTR-51	PTC 133	HEP-50	SK 3122	RT-102	ECG 123A	ZEN 100
2N2572	RS276-2009	T-50	GE-20	ICC. 50	IRTR-51	PTC 133	HEP-50	SK 3122	RT-102	ECG 123A	ZEN 100
2N2586	RS276-2009	T-50	GE-17	ICC-50	IRTR-21	PTC 133	HEP-50	SK 3122	RT-102	ECG 123A	ZEN 100
2N2587	RS276-2003	T-3	GE-51	ICC-3	TR-17	PTC 107	HEP-3	NA	NA	ECG 160	ZEN 301
2N2588	NA	T-2	GE-1	NA	TR-12	PTC 109	HEP-638	NA	NA	ECG 126	NA
2N2590	NA	T-51	GE-21	NA	TR-88	PTC 127	HEP-S0005	NA	NA	NA	NA
2N2591	NA	T-51	GE-21	NA	TR-88	PTC 127	HEP-S0005	NA	NA	NA	NA
2N2592	NA	T-51	GE-21	NA	TR-88	PTC 127	HEP-S0005	NA	NA	NA	NA
2N2593	NA	T-51	GE-21	NA	NA	PTC 127	HEP-S0005	NA	NA	NA	NA
2N2594	NA	T-706	GE-27	NA	IRTR-78	PTC 144	HEP-S3011	SK 3024	NA	NA	NA
2N2595	RS276-2023	T-52	GE-21	ICC-52	TR-88	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	NA
2N2596	RS276-2023	T-52	GE-21	ICC-52	TR-88	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	NA
2N2597	RS276-2023	T-52	GE-21	ICC-52	TR-88	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	NA
2N2598	NA	T-708	GE-21	NA	NA	PTC 127	NA	SK 3114	RT-115	ECG 159	NA
2N2599	NA	T-708	GE-21	NA	NA	PTC 127	NA	SK 3114	RT-115	ECG 159	NA

[^1]
R-E's Service Clinic

OTL Vertical Sweep

Where did the output transformer go?

JACK DARR
SERVICE EDITOR

LOOKING INTO SOME OF THF newer solid-state TV' sets. color or hlack/white. you might say "One of our components is missing!" It is! It"s the vertical output transformer. I ook at Fig. I. Whatt"s this"? The guys who say - An output transtormerless audio stage" are right: the ones who said "A vertical output stage" are also light. If "I." is a speaker. atldio: if "I " is the vertical windings of the deflection yoke. it's a vertical output stage. ()TI.. or Output Transformerless. You"ll find this in such new sets as GE's JA and MA color chassis. and others.

The theory is the same as in the audio applications. This is a push-pull output stage. identical to thone used in atudio amplitiers for some time. The output is tatien ofl at the mid-point. in this catse.
the common emitter connection (which can lead to some dandy new symptoms.

reontinuted on perge' 70)

＂Learn an honest trade，＂my old man used to say，＂and you＇ll never have to knuckle under to any man．＂

[^2]But you＇re never alone．Skilled instruc－ tors are always ready to help you．

If you ever have doubts or problems or just want to talk to your instructor，you can call ICS from anywhere，Toll－free．

ICS training works

More than $8,500,000$ men and women have turned to ICS for career training in the past 80 years．

Government agencies，unions and some of America＇s top corporations（including Ford，U．S．Steel，Mobil，Alcoa，Pan Am，GE， Motorola and RCA）use ICS courses in their own training programs．

Free demonstration lesson

If you want your job to give you more， （more money，more day－to－day satisfaction， and more furure）send for our career guide booklets and free demonstration lesson．

Remember，it＇s your life．You might as well make the most of it．
c 1973 ICS

IES

II＇Ill show you a beter way to cam a linime．
IES Internatumal Coriopondeme Schowls Scrantent，Pembsolvanla からに家

Pleare send une the Free Carect Cimbanc Wherklets and Fried I emonstration Leson for the tidd I have cheeded helow：I undertand 1 an under no oblygaton．
\square Electrician
［］Arrline－Tiand Tramme
\square（imputer Programmung
DAccounting
Mated Huted
Manatemem

．．anayenket
［］Air Comdtatome Refrecratuon 8 Heating
\square Enymecring
\square TV＇Sorviome
\square Ilectromes
\square Autormetio
$\square D_{\text {atang }}$
［ Arelniceture
［IIgh School
\square（Check for spectial booklett．if for or under
XA665Q

（If card is missing，please fill in the coupon and mail it to：ICS，Scranton，Pennsylvania 18515．）

SERVICE CLINIC

(continued on page 6.5)
which we ll get to in a minute).
The only difference between this and an audio amplifier is the signal input. Instead of rock music, we are dealing with a sawtooth signal. developed by an oscillator. The phase inversion needed for push-pull output is handled in a differential-pair stage, and a driver.
Some circuits use a bulfer amplifier between the oscillator stage and the diff-amp stage. The output circuit here is a true complementary-symmetry
type. with opposite polarity voltage supplies for the npn and pup outpur transistors. So the big capacitor used in single ended audio circuits like this isn"t needed. The yoke returns to ground. usually through the pincushion corrector and a feedback network.
In the GEcircuits. this feedback goes to the differential-amplifier stages. and is used to correct for any distortion in the output. A perfect sawtooth is developed. and there goes another old familiar component-the verticallinearity control. It isn in needed in this kind of circuit (and it won't be missed). Figure? shows the complete circuit. as used in

The world's Foremost consumer electronics catalog is yours for the asking! Over 25,000 items ... jampacked with illustrations and descriptions of the very latest in Hi-Fi. CB, Tape recorders, Radios, Television, Electronic Parts. Technical Publications.

Everything in Electronics For Home, Business, Industry PLUS The Latest in 4-Channel Stereo!

LAFAYETTE 1974 CATALOG 740

Our 53rd Year
Stores From Coast-to-Coast

$\begin{aligned} & \text { MAIL } \\ & \text { THE } \\ & \text { COUPON } \\ & \text { TODAY } \end{aligned}$	LAFAYETTE RADIO ELECTRONICS P.O. Box 10, Dept. 17103 Syosset, L.I., N.Y. 11791
	Send For Your Free Lafayette Catalog Today!
Sendme the FREE LAFAYETTE Catalog	
Nadess	
city slate zip	

the GE JA chassis
Along with the new circuitry. you will see some "different" symptoms. as compared to our old "stock" vertical symptoms. For example, if you get a set with a nice linear picture. but only on the top half of the raster. or on the bottom half of the rasters. what would you say? The picture isn't compressed: half of it's not there?
This is a real dandy and it can lead us straight to the trouble. (And we love them. don't we'?) In Fig. 2. if the top half of the picture is missing. Q268 is open. If the bottom half is gone. Q267 is open. Egg in your beer?
The vertical centering control voltage is fed to the differential-amplifiet stage. So if the picture will not center properly. go straight to this stage and make sure that it will "halance": both transistors good. etc. There is another handy trick youl can use. on certain chassis. (These are the ones where the vertical output transistors are not on the vertical module itself. but on the chassis.) If you have the old familiar symptom of "Thin horizontal line-no vertical sweep". Hy moving the vertical centering contiol. Ii the line moves up and down about the right amount. the vertical olmput transistors are good. Goand look in the vertical ons illator stage for the cause of the trouble tand thanks to GE's GEnial

ELECTRONIC TECHNICIANS!

Raise your professional standing and prepare for promotion! Win your diploma in

ENGINEERING MATHEMATICS

from the Indiana Home Study Institute
We are proud to announce two great new courses in Engineering Mathematics for the electronic industry.
These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousunds of men, from all walis of life. on mathematics, and electrical and electronic engineering.
You will have to see the lessons to appreciate them!
NOW you can master engineering mathematics and actually enjoy doing it! WE ARE THIS SURE: you sign no contracts-you order your lessons on a money-back guarantee

In plain language, if you aren't satisfied you dont pay, and there are no strings attached.
Write today for more information and your outline of courses.
You have nothing to lose, and every thing to gain!

The INDIANA

HOME STUDY INSTITUTE
Dept. RE-1, P.0. Box 1189, Panama City, Fla. 32401

GEntleman from Memphis: John Stoll, for that one!)

In the JA chassis circuit shown in Fig. 2, observe the novel method of supplying power to the vertical output transistors, driver and diff-amps. Note the arrows saying "To Pin-7 HVT", "Pin 6 HVT" and "Pin 9 HVT" (High Voltage T ransformer). These go to a winding on the flyback, which supplies 60 V p-p pulses, of opposite polarities, to rectifier diodes Y268 and Y270. Pin 6 is the center tap on the winding. The rectified pulses are filtered by the two big capacitors and provide the dc power needed for the vertical output stage. This has one benefit: if the horizontal output stage fails, you do not have the very bright, thin horizontal line, which might burn the screen of the picture tube. When the high voltage goes out. the vertical sweep goes with it.

In the next version of this chassis, the later MA. the dc voltage for the vertical output comes from the low-voltage power supply. $\mathrm{A}+13 \mathrm{~V}$ supply feeds the npn transistor, and a -34 V supply feeds the pnp. $A+130 \mathrm{~V}$ supply feeds the vertical buffer transistor, through the SI/E control (and service switch), and a +23 V supply feeds the oscillator.
For a final "new symptom", in the JA chassis, if you see no video and no raster, and the fuse, F405, is open, check the vertical output transistors.

Our $21^{\text {st }}$ year of service to the World's finest craftsmen and technicians.

END OF THE REPLACEMENT TRANSISTOR NIGHTMARE

just 47 transistors replace over 22,500 0.E.M. part numbers.

Finding the right replacement transistor has been a real toughie for most service technicians. Over 22,500 existing part numbers have made life aifficult. Now, they can be replaced with just 24 small-signal, 18 power, and 5 field effect transistors. You can get any or all of the 'Fantastic 47' on the selfservice Semiconductor Q-Mart at your Sprague distributor's. While you're there, pick up a tree copy of the 48 -page K-500 Semiconductor Replacement Manual. Or . . . write to Sprague Products Co., 81 Marshall St., North Adams, Mass. 01247.

THE BROAD-LNE PRODUCER OF ELECTRONIC PARTS
Cirde 17 on redader service card
raster, and the fuse, F405. is open, check the vertical output ransistors: both of them may be shorted.

reader questions

6BK4 PLATE GIGOWINGRED

The $6 B K+$ high-ioltage regulator plate glows red, in this RCA CTC-25, at all settings of the horizontal efficiency coil. Cathode currem of the 6.156 is about 220 to 240 mA. 6BKt's have short life, too. L.B. Marvsvale, Utah.

Ive seen some that would "show color if the $7 V$ scene went dark. (Regulator taking all the current). However. I don l like to run them with red-hot plates at all times

This naturally means that the 6BK4 is drawing too much curient. " 7 oo much" in this tuhe means more that 1.5 mA . Chech the $6 \mathrm{BK}+$ cathode comrent. and adjust the control so that you do not draw more than 1.0 mA . With the screen dark. At average hrightness. you should draw something like 0.2 mA . or 0.2 V across the 1 h GBK4 cathode iesistor. This will put the dissipation of this tube in the ballpark. If it won't. clreck the grid resistors!

PLYMOUTH RADIO

This Plymouth 9BBCC radio will only play on strong local stations. When I opened it up. I found that someone had connected a $001-\mu \mathrm{F}$ capacitor from the antenna trimmer to the emitter of the rf amplifier. This capacitor should go to one of the tuner coils; when I put it back there, mothing. What's going on? - J.S Decaturville, Tent".

Nothing is "what s going on." As lar as rf gain is concerned, anyhow. You*ll probathly find that the of coil is open. and that someone found out that he could shunt the signal around it. to the If stage. This practically kills all gatn in the if stage. of course. Replace the coil, and reatign.

INTERMITTENT STEREO

I'm an old tube-type technician, alud | do get lost in some of the new johs. Take this Sherwood S-710nA. While it's cold. it will play in the stereo mode. then it will switch back to mono. Plays finc. but mot stereo. Need advice. - F.S. Vanconver B.C.

If vou do not tone the signal. but only the stereo effect. this is a loss of pilot carrier. Signal-tate this through the MPX decoder circuit. frequency doubler, and so on. You'll find a "thermal" part somewhere atong the way. Gour scope will show this up very easily.

STM\&FIFVT OI OWNERSHIP. MANAGENIENT AND)(1R(1 1 ATIO) AAt of Augus 12. 1470: Seclion

1. Fite of puhlication: RADIO-E1.ECTKONICS
2. Date of liling: Octoher 5, 1973
3. Frequency of Noue. Alomihly

Lacstion of knows affice of publications: 2(0) Parh Avenue sumth. New York. Nen York f(KM).
s. Lakalion of the headunarters of general busine so of fices st the publisher:- Ferry Sireet. Cincord. Merrimach Cuunty. Ne" Hampshire 0izul
 inge editur: Publisher and! 1 ditur-In-Chici. W. Harsey Giernshatil. 2ow Park Sie South. Ver" Yurk. V Y. 10003 Editor. Larry Steckler. Zunt ${ }^{2}$ arh Arenuc South. New I'arh E.Y. IOMis
7. Owner: Gomatack Puhlicathons. Irk... 30) Pairh Av enue Suth. Vew York. New Yurk Ioma3: 11 . Harvey Germsich. ? (u) Piak A venue bunth. New York. New York fomin ir min or eplentiver Y, Y boub fith siceer. Nell York. .Y. 1003h
mether and uther werrity holdervom ning or halding I pereent or mere al tolal antemint of hond. mortgige or ather securitica: None revular rite (acoion b? 23 hy pukianher mationg it the
 accurdante "uth provishons of U. S. . Wizh. I herehy re
 the reduced grabge fates presenty inumorised hy en 10. Forr completion hy nonprofit arganizations :at therifed tomailat -pecial rat ex: Doerometaply int hiscase 11. Extent and nallure of circulation. Average numher on copice each isale during poceding 12 months. (1) Tota
 circutation: (1) Siles through dealers and carriers. street vendeve and counter salen: SI (0x4: II) Alail vimoriptions
 tribulien he mail. carrier or ather meam: 11 Samples. conn plimentaly. and wher free copres: 1.136: I2) coppiev distri huled tor me"w igens. hut mot wald: 55,926; (E) latal dis (ributinal: $\mathbf{2} 07.117$ (f) ()flice uac. kelt nver. unimenonted.

 ing date: (W) Tolal No. wheres printed (neot press run) 211.N3:1 13) Paid (irculation: (1) Sales 1 hrough dealersand surriers. slreet vendors and cominter vise st hd : (2) Alat
 (1) Free disirihutun hy mal. Earrier or other means. 1 ! (anpies diverihuled fun news apems. hul nor wold: 49567 : 1

 I certily that the statement a mad hy ne showe are correct and complete. (signed) II. I. Matyonk. (irsulation Alanager

InterNATIONAL

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
The $\mathbf{F M}-2400 \mathrm{CH}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.
The $F M-2400 \mathrm{CH}$ with its extended range covers 25 to 1000 MHz . The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency Stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}(.000125 \%$ special 450 MHz crystals available).
Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

FM-2400CH
(meter only) $\$ 595.00$
RF crystals (with temper-
ature correction)
RF crystals (less temper-
ature correction) $\quad 18.00$ ea IF crystals...................catalog price

CRYSTAL MFG. CD., INC. 1O NO. LEE - OKLA CITY OKLA. 73102

BLUE BOW
This CTV'rF Motorola Quasar chassis has an odd convergence problem. Everything else secms OK, but the blue horizontal lines won't straighten out; they stay bowed upurard at the ends. Checked coils and controls, which all seem to be working. Could this be something in the convergence yoke? J.S. Lubbock Tex.

This sounds as if you don't have enough control of your blue vertical tilt. This circuit makes the blue horizontal lines bow up at the ends. There is a hint on this in the manual. Note the tap on the convergence board with the blue and brown wires. Reverse these jumpers to get greater range on the blue vertical amptitude and blue vertical tilt.
Before you do anything too drastic. demagnelize the whole thing very thoroughly. I've seen this affect em.

SYNC "DROP-OUT"

They brought us a Motorola TS-597 chassis that had been dropped by movers. We replaced a couple of tubes, straightened up some more, and got pix and sommd. Now all we need is some horizontal sync. The picture will barely hold, but if you move the core of the stabilizer coil even a tiny hit, out goes the synt. Very odd. - H.B.. Hopewell. Va.
This has a very familiar sound! "Deductions" - If the picture will hold at all. the chances are your hold coil.

START THE NEW YEAR WITH A GREAT BARGAIN!

GET THESE TWO TV TECH AID BOOKS AT REDUCED PRICES:

1971 B\&W BOOK - NOW \$3.95 1970-B00K FORM - NOW \$3.95

TV TECH AID BOOKS ARE FILLED WITH THE LATEST QUICK-SERVICING INFO ON COLOR TV, B\&W TV, AND STEREO

TV Tech Aid Takes you right to the source of the trouble without guess work and wasted time. In each monthly issue you receive over 40 actual causes and cures of color and B\&W TV trouble symptoms. You also receive timely and complete information about circuit modifications and other valuable service data.

USE THE COUPON BELOW TO PLACE YOUR 1974 SUBSCRIPTION (12 ISSUES \$7.95) OR VALUABLE BACK ISSUES

$$
\text { Circle } 20 \text { on reader service card }
$$

Everything you wanted to know about CD Ignition Systems but didn't know whom to ask.

Send for FREEE Tiger booklet (20 pages) which answers all your questions.

CLIP OL"I THIS AD AND SEND TO-
TRI-STAR CORP.
P. O. Box 1727 Dept. H

Grand Junction, Colo. 81501

> Assemble this digital clock and calendar in just one evening...get continuous readout of hour, minute and second, plus month and day.
This new Digital Concepts electronic digital clock and calendar indicates the hours, minutes and seconds or the month and the day ...or alternates between time and date at 10 second intervals. Glowing orange digital readout (a continuous character .55 inch high) is visible from almost any viewing angle. no matter how light or dark the room.
Operation is totally silent, with accuracy to within seconds a month; life expectancy is an incredible 100,000 hours

CHOICE OF DISPLAY MODES

You can decide to display time only, date only. or a continuous 10 -second cycle in which time alternates with date You can operate on a 12 hour or 24 hour international time sequence And you can change all display modes instantly -any time you wish - by flicking simple controls

BEAUTIFUL, AND BEAUTIFULLY EASY
TO ASSEMBLE
The contemporary hand rubbed oiled walnut cabinet is ideal for home, office or place of business. And a very memorable gift. All components of the kit mount on two interlocking printed circuit boards. for easy assembly in one evening, using only a soldering iron and a pair evening, using only a soidering iren and a pair of diagonal cutters. The only wire in the kit is
the line cord Accuracy is assured by one the line cord. Accuracy is assured by one
MOS/LSI integrated circuit "chip" and top quality electronic components throughout The Digital clock and calendar is also available factory assembled.
ORDER NOW FOR IMMEDIATE DELIVERY
Send this coupon with your check or money
order for fast delivery anywhere in the world Money back guarantee if not fully satisfied.
digital concepts
249 Route 46, Saddle Brook, New Jersey 07662
Enclosed please find my check or money order lo:
s.urcher or charge my Mastercharge account
number - expiration date
to cover the following order
hit(s) of electronics only. Modet CK-100
- 568.00 each
cabinet(s), with face and mounting hardware.
Model C-31 io $\$ 18.00$ each
factory assembled calendar/cloch(s). Model
EC. 102 © $\$ 108.00$ each
Add $\$ 3.00$ to cover costs of postage and handling.
Name
Address
City
State
2ip

EV•GAME makes replacing cartridges a snap. We offer virtually all originals or exact replacements. No one else comes close.

Here's an example of what that means to you:

THE ORIGINAL

ZENITH 142-163
Typical of cartridges you replace every day. A quality 2 G floating cartridge.

THE EXACT REPLACEMENT

EV5371D

A perfect match to the original in shape, size, color. needle and especially the $2 G$ quality. Installation takes seconds in old bracket. No need to explain any differences, there aren't any.

THE SUBSTITUTE

 ASTATIC 605Totally different in appearance; something a Zenith owner will immediately notice Takes considerable time to install Requires modification of tone arm by covering up hole with a paper decal where original needle shaft was. Will not accept original needle

Tools you may need for a substitute
Needle for needie. cartridge for cartridge and pin for pin. you can't beat an Electro
Voice. The fact is, when you specify Electro-Voice you save time and effort and you
don't have to make embarrassing excuses for a cartridge that doesn't look or work like
the original. You don't need special tools or parts. There's no unusual handling or
installation. The result is that you have the best chance to maximize cartridge profits
and customer satisfaction with EV • Game
So see your local distributor for Electro-Voice replacement cartridges. Also ask
him for the new EV • Game catalog. It's the most comprehensive and easiest-to-use
Simplifies selection of nearly 700 cartridges. And write to us for our revealing Replace
ment Cartridge Comparison Chart. Learn more about how we make it a snap for you to
replace cartridges, EV •Game. Inc. Box 711, Freeport. N.Y. 11520.

©EV.GAME inc.

division of electro-voice inc. - a Gultion company
In Canada: E-V of Canada. Ltd.. Gananoque, Ontario

READER QUESTIONS
(continued from page 72)
afc diodes. etc. are OK. However. the reactions youre getting are those of a complete loss of the horizontal sync to the atie stage.

Under the circumstances. I d start at the plate of the syne separator and check for correct amplitude horizontal sync at that point. Now. follow this through the PC board to the afe unit. You'll probably find a hairline crack. keeping it from getting to the diodes.

BUZZ ON "OVERLAY"

I have a problem I can't get rid of. In many of the sets I service. the owners complain of a buze in the sound, whenever white letters or numbers are superimposed on the screen. over a picture. What can I do about this? - R.II. Cloveland Ohio.

That's right! Youl can't get rid of it Not in the TV sets themselves. that is. It's not in them. It is something in either the network. "overlay unit" or audio of the TV fransmitter. I have seen and heard this on both local and network programs
A properly-operated overlay unit will not produce this buzz. The cause is probalby something like a slight overmodulation. which punches holes in the audio signal. making a buzz.

TOOL KITS

FIELD ENGINEER TOOL KIT JTK-17

More than 100 flne tools used for servicing in the field. Used on communications equipment, huslness machines. computers, all kinds of electronic systems. All tools and

FIELD ENGINEER ATTACHE CASES

Pockets for 60 tools. Solid wood frame. Scuff-proof Marvelon cover, all brass hardware. Compartments in base for
spare parts and a test meter. Dimensions: $18 \times 13 \times 4-1 / 2^{\prime \prime}$. spare parts and a test meter. Din
Write for catalog.

SIRNEIERN TOOL® and A工工oxe
high voltage in the secondary fires the spark plug (8).

Theres some very clever engineering here! Due to the special design of the flywheel magnets and core laminations. this system has an altomatic spark-retard. This makes it easier to start (anyone who has ever cranked a Model T Ford with the spark adranced knows why!) An alltomatic retard of about 9 is achieved by this design. After the engine has caught. and run up to speed. anywhere from 800 rpm on up, the system automatically advances the spark by about 29°. which makes the engine run much better.

A "hill-switch" grounds the CD system. to stop the engine. This is connected through the ignition switch This switch is used. even on handcranked models. for sately. 11 must be turned on before you can start the engine.

DIGITAL:THEORY,DESIGN

LOGIC

 NEWSLETTER ${ }^{\odot}$ SAMPLE COPY $\$ 1.00$ LOGIC NEWSLETTER POB 252 WALDWICK.N.J. 07463Troubleshooting these systems is very simple. They're purely Aristotelian: they work. or they don't? To test the system, take out the spark plug (and chech it or clean it. or replace it: plugs catuse most of the trouble in all small engines!). Clip the spart-plug lead to it again. and ground the shell. preferably with a dual clip lead. to the engine. Turn the ignition switch on. and crank the engine. You should get a hot. fat blue spark across the plug's electrodes. If you don't. pull the killswitch lead. and make sure it isn't grounded. (It has a pusth-on connector on the ignition switch.) If you still get no spark, the CD unit could be bad

Replacement is simple: only two screws hold it after you take off the air baffle. which has only three screws.

If the module must be replaced. you'll have to use a special nonmetallic gatuge to get it spaced properly with respect to the flywlieel. Without this. the flywheel magnets will pull the laminations against the outside of the flywheel. Clearance at one end is .010 inch, and about $1 / 4$ inch at the other. This odd spacing is the key to proper operation of the solid-state system.

Caution: if the engine has been rumning, don't mess around the spark plug for at least 10 seconds! Just allow the CD pack charge to leak off. \quad R-E

You're really on the ball if you buy Perma-Power Color-Brites NOW during this special promotion. The kids on your gift list will enjoy the miniature football or basketball that comes free with 4 Perma-Power Color-Brites (1 Model C-501 for round tubes. 3 Mcdel C-511 for rectangular tubes.) You'll enjoy the special savings....as well as the appreciation from your customers when you brighten their color TV picture and thus extend its useful life.

Hurry Please...
This is a limited time offer. Call Your
Distributor Now.

COMPLETE LINE OF ELECTRONIC SUPPLIES ICC/Mullard \& Raytheon Tubes Telematic Test Rigs TV Tuner Subber

Circle 26 on reader service card

Now...the most enjoyable do-it-yourself project of your lifeA Schober Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment. more benefit for the whole family, than by assembling your own Schober Electronic Organ.
You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you - whoever you are, whatever your skill (or lack of it) - how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of the kit.
Five superb models with kit prices from $\$ 500$ to around $\$ 2,000$, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished professional. And there are accessories you can add any time after your organ is finished-lifelike big auditorium reverberation, automatic rhythm, presets, chimes, and more.

Join the thousands of Schober Organ builder-owners who live in every state of the Union. Otten starting without technical or music skills, they have the time of their lives - first assembling. then learning to play the modern King of Instruments through our superlative instructions and playing courses.
Get the full story FREE by malling the coupon TODAY for the big Schober color catalog, with all the fascinating details!

STEP-BY-STEP

(comtinured from page 62)
hard, dropping the gate voltage of starter Q602 to zero, shutting it firmly off

With the horizontal oscillator operating, terminal 17 of the power supply board receives the IC oscillator output and routes it through C6I8, L605 and D609 to the base of pulsewidth modulator Q606. This amplifier feeds its output back to the base of pulse-width modulator (P.W.M.) No. 2 through C614. There is another phase inversion and the resulting voltage from the collector of Q607 now passes through parallel R-C self-bias R623 and C613 to the base of current predriver Q605 and then on to the rest of current amplifier-chopper Q604. The 50 V p-p pulse output swing at this point passes through transformer T603 R619 and L604 to the gate of GCS Q603, the large, heatsunk. regulator output. Smoothing choke L601 and filter capacitors C621. C623 do the rest.

Now. resistive dividers R603 and R604 supply a calculated 11.4 V to the top of R634 and then to the base and emitter of Q608, Q609, respectively. These are the EVP detector and error amplifiers which also receive an addi-

tional potential from $130-\mathrm{v}$ adjust pot VR601, whose wiper is connected through R637 and R618 to the $130-\mathrm{V}$ output. Small changes in the regulated supply induce small deviations in the base-collector of Q608, producing longer or shorter pulse intervals in the pulse width modulators, and therefore more or less conduction in the Q603 regulator output. A considerable change indicating a breakdown, however, will force Q609 into a conduction, firing Q610 and robbing current from the IC horizontal amplifier output, kicking the oscillator either out of sync or, removing drive altogether, killing high voltage.

The cure is not always easy

When a switched power supply is contained within itself, smart money disconnects one or more of the external loads and starts looking for a fault if there is any indication that the supply is operating at all. With external excitation-such as those being driven by the horizontal oscillator, as in the case of Motorola and Sonyyou first measure the doubler voltage to see if there is a bad filter or if a diode is open or shorted. Next (with Motorola) remove the DA/F power supply panel. If sound returns, your probable trouble is in the power supply. If the entire power supply is

PAIA

MAKES THE ONLY

MODELS PRICED FROM $\$ 139$

changed and you still have problems, go to the output feeder lines and disconnect them one by one to find your problem.

With both Sony and Motorola, remember that the power supply will furnish no regulated output unless the horizontal oscillator and driver are operating. Therefore, a fault in the horizontal circuits can kill your low-voltage supply dead. In the Sony, for instance, while looking at waveforms around Q608 and Q609, the scope probe slipped suddenly, there was a sign of escaping high voltage, and the set gave up the ghost. F602 was
blown, and a new one promptly got itself blown again.

Under these circumstances, an additional power supply for the $130-\mathrm{V}$ and $19-\mathrm{V}$ outputs might have helped considerably, but were not available. So we had to make resistance measurements by the score, several transistor checks (especially the GCS transistors), until we finally found horizontal output GCS transistor shorted. When such occurs, also check the base-emitter of horizontal driver Q509 (not shown) to make sure it hasn't gone too.
(contimued on page 94)

IHE SOLID STATE ELECTRONIC TEST INSTRUMENTS YOU CAN AFFORD.

LBO-310 3" GENERAL SERVICE SCOPE
A rugged, low cost. Solid State 3" Scope for service. -prod'n \& short wave use, too. AC/DC coupled vert \& hztl inputs. Monitors 100 MHz waveforms. direct conn 10Hz. 100 KHz sweep. 4 steps, cont adj. OC to 1 MHz bwidth. Easy to read. Use side by side to view sep. phenomena. Compact.
$\$ 199.95$
LT-70 VOLT/OHM METER
A smart. Portable Tester. more accurate \& sensitive than expensive units. Overload protected * polarity reversal. Reads as low as $0.25 \mathrm{~V} \& 75 \mu \mathrm{~A}$. Measures small solid state DC readings; 20.000s //VDC: 8000s2/ VAC sens. \& to 40 M ? resistance. Battery operated

LPS-155 REGULATED DC POWER SUPPLY A stable transisiorized Regulated DC Power Source for testing home entert'm't products - line \& batt. operated. Useful production line tester. 35V output cont. var. w/0.5A max current. Trans'trzd guerload protection; = polarity. $3 \mathrm{mV} / \mathrm{p} \cdot \mathrm{p}$ max ripple. 115 V in. put.
$\$ 129.95$
ISG-15 RE WIDEBAND SIGNAL GENERATOR
A solid state Wideband RF Signal Generator with calib, freq. dial plus FETs. $400 \mathrm{H} z \& 1,000 \mathrm{~Hz}$ int'I mod. source; $120 \mathrm{KHz}-450 \mathrm{MHz}$. Locate problems quickly. RF. IF. video circuits.
$\$ 109.95$

151 Dupont Street Plainview. L.I., N.Y. 11803 (516) 822-9300

Item
'ORDER'
PRODUCTION LINE
QUALITY
RECTIFIERS
Item Price Price
$\$$
Radio/TV Âpplications
16500 PRV Sel. Focus Rectifier

4/\$2.00
25 Pin Convergence Rect./Magnavox
37 Pin Convergence
Rect./Wells.Gard 4/\$1.25
47 Pin Convergence Rect./Misc Makes 4/\$1.25
59 Pin Convergence
Rect./RCA
6 Selenium Voltage Tripler
7 Silicon Voltage Tripler
8800 PRV Sel. Boost Rect. (Zenith/Wells Gard)
91200 PRV Sel. Boost Rect. (Wells-Gard)
10 Sil. 183 Retro-Fit Rect. 11 Sil. 5R4 Retro-Fit Rect. 12 Sil. 5U4 Retro-Fit Rect. 13 Sil 5V4 Retro-Fit Rect. 14 Sil 5 Y 3 Retro-Fit Rect. 15 Sil. 524 Retro-Fit Rect. 16 Sil. 6×4 Retro Fit Rect.
new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.

CB TRANSCEIVER, model $13-862$ uses synth esized 23 -channel circuit and advanced integrated circuitry. Transmits with full 5 -watt rf input and contains selective dual-conversion receiver with tuned rf and agc. Automatic noise limiter and fully variable squelch are provided.

Large back-lighted S/RFO meter and "luma dial" channel indicator have been placed on

sloped top panel that is right in sight for the diriver in normal underdash installations. Channel numbers are large: all controls. on/oft/volume, variable squelch and channel selector, are clearly marked. 2" - 5*1/9 - 9": 3 lbs.: $\$ 99.95$ - complete with full-size plug-in mike. clip and mounting bracket. - Midiand Electronics Co., Box 19032. Kansas City, Mo. 64141
(Cirche.3) on reseder wervize card
PHONO CARTRIDGE, model AT12S is a dualmagnet cartridge to be used with CD-4 discs. Shibata diamond tip; reduced record wear and improved tracking with stereo or matrix discs:

for use in manual or automatic turntables. Frequency response: $15 \cdot 45.000 \mathrm{~Hz}$: channel separation (at 1 kHz): 25 dB : $\$ 49.95$. - Audio Technica U.S., Inc., 1655 West Market Street. Fairlawn, Ohio 44313.

SOLDERING GUN ELEMENT, Gunmaster uses interchangeable soldering tips and solder removers. Element will fit most soldering guns and is permanently installed. For soldering plastic sealing, marking, etc.. a tip called the "slug" is screwed into the front end of the ele. ment. For removing solder by capillary action. the hollow bore desoldering tip called the dum dum" is screwed into place. For removing heavy solder deposits, a solder sucker may be attached to the back end of the "dum dum

Tip-holding element resists solder and will not weld itself to "slug" or "dum dum". Ele. ment heats a bit more slowly than conventional copper wire solder gun elements. - Gunmaster Universal Industries, P.O. Box 743. Kings Park. N.Y. 11754.

Cirde' 3.3 on rededer servide' card
TOOL DEPOT, part No. TD123. Bracket is positioned at arm's length for people who like their tools nearby. Can be easily mounted in

work area. Makes a convenient place to store all your soldering tools and supplies. \$1.00. Edysn, Inc., 14250 Dearborn Street. Panorama City, Calif. 91402.

Circle' it on reader sorivere eard
DIGITAL PANEL METER, mode/ 1230. 3-1/2-digit bipolar unit uses the company's patented

TOTAL \$ AMOUNT ENCLOSED.
(SORRY - NO CASH OR COD ORDERS. PLEASE)
dual-slope integration, 0.5 Sperry display and automatic zeroing. Standard features include $2 \cdot n \mathrm{~A}$ input bias current, choice of $7.5,15$ or 30 -per-second sample rate or user-con- trolled conversion and is accurate to 0.1% of reading. • 1 digit accuracy and provides 100% overrange operation. Uses CMOS and TTL logic: 7 -segment display: $\$ 135.00$. - Weston Instruments, Inc., 614 Frelinghuysen Avenue. Newark. N.J. 07114

Cirche 35 on reculer servica curd
CB MICROPHONE, modeI DM 301 is omnidirec tional and has a 50 K impedance and a trequency range of 100 to 8.000 Hz . Sensitivity is 52 dB at $1,000 \mathrm{~Hz}$. Has non-locking, push-totalk switch and is equipped with a three-

conductor, shielded curl cord that extends to 6 feet in length. Can be hand-held or operated from a fixed position: less than 6 oz . - Shigoto Industries Ltd., 350 Fifth Ave.. New York. N.Y. 10001

Cirche 36 on reader service curd
MOTO-TOOLS. model 370 \& 380 have builtin finger-tip speed control that lets the user dial optımal rpm settings for any material. Speed

A quatrerly for the craft ambion huff FUTURE FARE: A toncarm,preamp, a custom Dyna Stereo 70. Hiss filter. Synthesizer. Transmission Line Speakers. A variable inflection 3 -way tone control-and much more.
PROJECTS PUBLISHEI): a 9 oc tave equalizer, Dyna PAT-4 update. power amps and preamps, a simple mixer, two 4 -channel decoders and two encoders, 9 octase electrostatic speaker with a matching 900 W . Direct coupled tube amplifier. . plus much more.
"Abulutely top qualily...the maly l..s.
 really werious, aludmphale enonstructor."

Name'
Idelres
(it
\qquad
$1:$ Stute II'
Quarterly: $\$ 7$ yr.: 3 years $\$ 20$. P.O. Box 30 . Swarthmore PA 19081

range of 5.000 to 25.000 rpm provides precise control for delicate and rough sanding, drilling. cutting, etc. in a variety of material. including wood. metal, glass and plastics.

Mode/ 370 has an 0.8 -amp permanent magnet motor. oil impregnated bronze bearings, is $7-1 / 4$ long by $1-1 / 16^{\prime \prime}$ in diameter and costs $\$ 39.95$ Model 380 features ball-bearing construction. 0.9 amp permanent magnet motor, is $7-1 / \mathrm{s}^{\prime \prime}$ long by $1-1 / 32$ in diameter and costs $\$ 49.95$. Both operate on $115 \mathrm{~V}, 60 \mathrm{~Hz}$ ac. weigh 11 oz . and have $63^{\prime \prime}$-long connector cord with threepronged safety plug. - Dremel Manufacturing Co., Marketing Dept.. RP. P.O. Box 518. Racıne. Wisc. 53401.

Coride 37 on reader survice caral

CHANNELLOCK

Gives You More In Hand Tools Including THE WIREMASTER •

PERFECT CUTTER ALIGNMENT
Unique enclosed joint design holds cutiong edges in factory-perfect alignment for the long life of the plier. No way for the jaws to get out of line ever

WANT TO KNOW MORE?

You'll get a lot of hand tool information in our catalog. It's yours for the asking. Write us.

('ircle 6Son rader serviee curd

new literature

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free. Use the Reader Service Card inside the back over.

SYNTHESIZER MODULES, catalog 573. 4-page booklet describes voltage-controlled amplifier. voltage-controlled oscillator, voltagecontrolled filters. function generator, contro oscillator/noise source, power supply. controller/case, keyboard/case, envelope lollower/trigger, inverter/buffer, sine converter/PWM and kits.-PAIA Electronics, Inc., P.O. Box 14359. Oklahoma City, Okla. 37114.

$1 \mathrm{AD}^{2}$	1.28	6AV6	. 89					6LY8			
183	1.30	6AW8	1.47		1	11		$\begin{aligned} & \text { 6LY8 } \\ & 6 \mathrm{MD8} \end{aligned}$	1.28 1.73	12 F $12 \mathrm{GE5}$	1.11 1.71
18C2	1.13	$6 \mathrm{CXX}_{4}$	1.22					6ME8	4.30	12GN7	
1K3	1.30	6 6, 3	1.22					6S.7	1.76	12HL7	1.82 1.61
1S2A	. 90	68A6	1.08			OF		6SK7	1.65	12 SA 7	1.65
1U5	1.13 .78	68A11	1.61		WEST	QUA		6SN7	1.32	12 S07	2.10
1×2	+1.33	6BC8	1.61 1.13		HJT	CUA		$6 \mathrm{SO7}$	1.62	$13 \mathrm{GF7}$	1.71
2AS2	1.28	6BH6	1.32					678 6710	1.55	14 BR 11	1.91
2AV2	1.02	6BH11	1.80					6710 608	1.77	15CW5	1.80
2021	1.35	68.J6	1.32					6 6 10	1.28 2.40	$15 \mathrm{CW5}$ $15 \mathrm{kY8}$. 90
$2 \mathrm{GK5}$	1.26	6BK4	2.45					6 V 4	2.40 .68	16A8	1.1
3A3	1.32	68 L 8	. 89					6 V 6	. 1.47	176AY	1.14
3AT2	1.28	68M8	1.05	cuy of	Mo ne\%	manuf	nen's	6Y4	1.47 1.13	17AY3	1.22 1.22
3AW2	1.32	68N8	1.41	coxed	(ete.	at ion	Listi	6×5	1.17	178EF11	1.22 1.95
38S2	1.39	6805	1.28	If6mu	ce.t	at rot	Cist	6X8	1.47	$17 \mathrm{BS3}$	1.95
$3 \mathrm{BZ6}$	1.22	6806	1.77					6×9	2.10	$17 \mathrm{CU5}$	1.22 1.02
$3 \mathrm{CA3}$	1.22	$6 \mathrm{B07}$	1.64		0			6210	1.99	17CU5	1.02 1.82
$3 \mathrm{CU3}$	1.61	6BU8	1.67					7 C 5	1.41	17JB6	1.82 2.10
3083	1.44	68 V 11	1.92		ALL	UBES		70J8	1.95	17JZ8	2.10 1.35
$30 \mathrm{C3}$	1.80	68X6	. 92		BRAND	D NEW		758	3.00	17KV6	2.84
$3 \mathrm{EJ7}$. 83	6826	1.02		MANU.	BOXED		7V7	1.80	18GV8	1.53
3GK5	1.26	6 C 4	1.22		70\%	OFF		8 A8	1.02	1978	1.53 1.61
3HA5	1.26	6CA4	1.23	6GM6	1.28	6JS6	2.42	8AW8	1.76	20403	1.08
3 H 05 $3 \mathrm{JC6}$	1.86	$6 \mathrm{CA7}$	2.10	6GU7	1.36	6 JT 8	1.47	8CG7	1.85	21GY5	1.65
3JC6 3KT6	1.67 1.23	6CB6	1.08	6GW8	1.35	$6 \mathrm{JU8}$	1.46	8GJ7	1.20	21 JZ6	1.61
$3 K 16$ $48 Z 6$	1.23 1.22	6CE3	1.29	6GX6	1.10	$6 \mathrm{JW8}$	1.02	8JU8	1.35	21LR8	1.80
4DT6	1.25	6CG8	. 1.41	6HA5	1.26	6 KAB	1.61	$8 \mathrm{JV8} 8$	1.41	21LU8	1.80
4EH7	1.17	6CJ3	1.23	6 H 87	1.41	$6 \mathrm{KD6}$	2.93	$8 \mathrm{KR8}$	1.86	23JS6	3.74
4EJ7	1.17	6CL6	1.56	6HF8	1.80	6KE8	2.00	${ }^{\text {8LT8 }}$	1.32	2379	1.56
4HS8	1.22	6CL8	1.47	6HF8 6 H 05	1.95	6KG6	2.88	9GH8	1.33	245 E6	2.76
4JC6	1.65	6CW4	1.86	6H05	1.67	6KN6	2.39	9JW8	1.17	25CG3	1.11
4KE8	2.00	6CW5	. 90	6HS8	3.00	6 K 78	1.77	10CWS	. 90	27GB5	2.55
5AQ5	1.22	60.J8	1.50	$6 \mathrm{6HV} 8$	1.56	6 K 28	1.33	10GK6	1.47	30AE3	1.08
5AR4	1.73	6005	2.61	6HV5	3.08 1.04	6L6GC 6LB6	1.95 279	10GN8	1.61 1.23	$30 \mathrm{KD6}$	2.59
5BC3	1.12	6006	1.76	6 J 10	1.04 2.00	6L66	2.79 1.83	10 JY8	1.23	$33 \mathrm{GY7}$ $35 \mathrm{C5}$	2.10 1.05
5GH8	1.55	6076	1.07	6JC6	2.00 1.47	6LE8 6LF6	1.83 2.78	10KR8	1.20 1.39	35C5	1.05 1.28
5GJ7	1.20	6DW4	1.22	6JD6	1.52	6LF8	1.68	118M8	1.73	35W4	1.28 65
5GS7	1.04	60X8	1.20	6JE6	2.85	6LJ8	1.44	118011	1.76	3575	.65 1.11
5LJ8	1.44	6EA7	1.85	6JH6	1.17	6LM8	1.61	12AE10	1.89	$36 \mathrm{KD6}$	1.11 2.91
5 U 4	1.01	6EA8	1.29	6JH8	1.77	6LN8	. 80	12AT7	1.13	38 HE 7	2.39
$5 V_{4}$	1.41	6EB8	1.86	6JM6	2.55	6LR6	2.66	12AU7	. 99	40KD6	2.91
$5 \mathrm{Y}_{3}$	98	6EH7	1.26	6JN6	1.76	6LU8	1.58	12AV6	. 77	50 C 5	$\begin{array}{r}2.91 \\ \hline 9\end{array}$
6AB4	1.19	6EJ7	1.17		VRIT	FOR		12AV7	1.52	50EH5	1.17
6AC10	1.80	6EU7	1.30		WRIT	FOR		12AX7			1.17
6AK8	99	6EW6	1.17	FREE	VALU	E PAC	ED	$12 A Z 7$.92 1.32	117P7	1.47 4.80
6AL5	98	6FG7	1.52		CATA	LOG		12BA6	. 93	5879	1.80
6AM8	1.52	$6 F M 7$	1.67					12BE6	. 99	6267	1.50
6AN8	1.65	6GE5	1.88	MININ	AUM OR	RDER S		128 H 7	1.28	7025	1.50 .92
6 6A05	1.11	6GF7	1.73	MINIM	UM	RDE		128 Y 7	1.17	7189	1.39
6A08	. 90	6GH8	1.04					120K6	1.20	7199	2.10
6 6AU4	1.58	6GJ7	1.20	Terms:	M BACK	GUARAN		12006	1.70	7408	1.50
6AU6	. 98	6GK5	1.52	Terms include	Minimum postage.	order Either full		12078	1.17	7591	1.80
6AU8	1.86	6GK6	1.22	ment with balance	$\begin{aligned} & \text { postage } \\ & \text { th order o } \\ & \text { C.O.D. } \end{aligned}$	$\begin{aligned} & \text { Either ful } \\ & \text { or } 20 \% \text { den } \end{aligned}$	pay. posit.	120W4	1.22	7868	1.85

[^3]RESISTOR CATALOG, C-509. 8-page booklet contains 5,980 catalog items with 616 different resistance values (from 0.1 ohm to 250,000 ohms) and 15 wattage ratings (from 1 to 120 watts). Includes basic descriptions and physical sizes: complete listings of the company's wirewound resistors.-Sprague Electric Co., 81 Marshall Street, North Adams, Mass. 01247.

NRI HOME TRAINING IN AIR CONDITIONING, REFRIGERATION AND HEATING. Outline of 45 lesson course covering servicing electric motors, refrigerant connections and servicing automotive heaters and air conditioners. Training units include circuit demonstrator (for learning fundamentals of electrical circuits) and control simulator (for learning electric controls). Each student receives a 5,000 BTU York window air conditioner to use as a practice unit and later for his personal use-NRI Training, 3939 Wisconsin Avenue. N.W. Washington, D.C. 3016.

1973 SEMICONDUCTOR INTERCHANGEABIL ITY \& CROSS REFERENCE GUIDE, \#451.104 44-page catalog lists over 6.000 semiconductor types including $1 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}$ and industry house numbers with cross references to either an exact General Electric type or a suggested replacement.-General Electric Co., Semiconductor Products Dept.. Electronics Park. Bldg. \#7, Mail Drop 49. Syracuse, N.Y 13201

ZENERS

All Units Tested And Guaranteed
400 MILLIWATT UNITS - 3. 3.3. 3.6, 3.9, 4.3. $4.7,5.6,6.2,6.8,7.5,8.2,9.1,18,22,24,27$, Volts
1 WATT UNITS - $10,11,12,13,15,16,18$, $20,22,27,30,33,39,43,47,51,56,62,68$ $75,82,91,100,110,120,130,150.160,180$ Volts. ALL UNITS $10 \%-4$ for $\$ 1.00$ ppd. 5% - 3 for $\$ 1.00$ ppd
6.3 Volt 1 Amp Transformer. Fully Shielded $\$ 1.60$ Each ppd
Transformer - 115 Volt Primary - 12 Volt 1.2 Amp Secondary $\$ 2.45 \mathrm{ppd}$ 113 VOLT TRANSFORMER
32.0.32 Volts At 1 Amp Secondary. Also Low Current 6.3 Volts Secondary For Pilot Lights $\$ 2.50$ Each ppd
115 VOLT TRANSFORMER 17.0.17 Volt @ 150 ma. Secondary With Tap At 6.3 Volts For Pilot Light. $\$ 1.50$ Each ppd
Transformer - American Made - Fully shield ed. 115 V Primary. Sec. - 24.0-24 @ 1 amp with tap at 6.3 volt for pilot light.

Price - A low $\$ 2.90$ each ppd
Transformer, 115 VAC Primary, 12 Volt, 4 Amp Secondary $\$ 4.00$ Each ppd.

Tubular Polystyrene Capacitors. All 125 Volts mfd 022 mid Your Choice 15 for $\$ 1.00$ ppd

ELECTROLYTIC CAPACITORS
Dual Section. Common Ground $100 \times 100 \mathrm{Mfd}$ @ 380 Volts. Ideal for Xcur Power Supplies $\$ 1.00$ ea ppd

```
SEND STAMP FOR BARGAIN LIST
Pa. Residents add 6% State sales tax ALL ITEMS PPD. USA
```


EQUIPMENT REPORT

(continued on page 2?)
unit can be used with the 970) for reading alternating or direct current. Current ranges are from $100 \mu_{i}$ up to 1.0 A . The insertion voltage drop is only 0.2 V or less
The HP-970A is powered hy a selfcombaned NiCad batlery. which is somewhere heiween 9 and 11V (depends on state of charge). It slips into the end of the probe case. A special charger is included: the hattery unit slips out and plugs into the charger housing. Both probe and charger are completely idiot-proot. A rib along one side of the hattery case must fit into at sot in both housings hefore the battery will go in.
The hattery will operate the 970) for about three hours: when it drops below about 9.5 volts. the display dims and it's lime for a recharge. The on-otl switch has a "push-to-read" position for the lirst click. This can extend hattery lite considerably The second click is normal on position.

The I.ED display is hright enough to read even in prelly bright sunlight. A Display Invert slide wwith can be used to turn the figures over so that the readout can be right side up no matter what position you or the instrument are in. (They have a cute little thing for this! Tiny man-figures are on the case: one is alwave covered by the invert witch vider. Set this so that the little man you see is not standing on his head. and there you are!

The actual test-prod is a short one. mounted on the undervide of the case. It can be folded out. with severat delents so that it can be sel at any angle you want. The center part telencopes. and is completely insulated. It has a very sharp tip. 10 make perfect con-

蹅

ITTLE SQUIRT stops

 all the noise.A squirt of Quietrole from the handy Spray Pack silences any moving T.V. part. Cleans as it ubricates, too. Guarantees quiet, trouble-free operation. Absolutely safe for any black and white or color set. Try it and see why it's preferred by top servicemen everywhere.

Also available in bottles, and the new silicone"Silitron."

tact to PC boards. etc. Two extension test prods are provided: one is a 5 -inch with a sharp tip. and the other a special ?-inch. with a hollow: cupped tip. This one is wary handy for hitting test-points, wire-wrap terminals, ends of wire leads on a P' board. and similar things. These eatrat tips tit in the socket on the end of the prod: the regular one just pulls out. Special pockets in the carrying case heep the extra rods sate.

The clectronics in the 970. A are a miracle of compactness. Out of the 6 inches of the case. three inches is hattery. and the rest is the works. Out of this small number. most of the space is laken up hy the switches. The heart of the unit is at monstrom (electronically) device roughly 0.5 by one inch. All that this contains is an analogue to digital converter, the attemutors, the auto-ranging circuitry. the auto-polarity circuitry and the logic! Outside of this. only 19 components
and three switches are needed to make the whole thing!

The whole instrument is designed for "one-hand operation". This makes it potentially very useful in today"s crowded instruments. The zippered catrying case even has it clip for carrying on your helt. With this. youl can be the "(uick-Draw McGraw" of the electronics maintenance set!

I know too well the hazards inherent in tirm statements: I have the lumps to prove it. So. I'Il contine myself to saying that es of right nom. this instruments looks to like the ultimate in "portability" when its versatility is taken into account It should certainly he very usefill to field engineers and anyone working with solid-state equipment. It would be most appreciated where the eyuipment to be checked is located in tight places!
$\mathbf{K}-\mathbf{E}$

> for finer, faster. Precision / R
Tuner Sexvice

SIZZLING DOLLAR VALUE

 CANADIANS: Ordering is easy - we do the paperwork - try a small order

SORmer
TV's incl schematic
70°. T Deflection yoke

90 Colof yone For all Rectangu
ca colon fiyback Patr $=1133^{2} 92$
 5_{50} - ACA COLOR YOKE PART \#2OG62 14.35^{95}

SONY UhF tuner-trans.
ISTOR TYPE exact replace- $\mathbf{\$ 3} 95$
ment. complete w/knobs.
-
sort ment $a 1$ I

SARKES TARZIAN TUNER 41 mc

Latest Compact Model good for all 41 me TV's. BRAND NEW-

Best TUNER "SARKES TAR. ZIAN ever made-last word for stability, definition \& smoothness of operation. An opportunity-to
improve and bring your TV Re improve and bring your TV Re-
ceiver up-to-date.
COMPLETE with Tubes WESTINGHOUSE FM TUNER *476-V-015001
IO
WESTINGHOUSE FM TUNER (12DTE UHF TUNER-TRANSISTOR TVPE Used $\mathbf{i n}$ all TV sets $\mathbf{3 . 9 5}$ STANOAAD TUNER-TRANSISTOR GGUIDED:1
GRID) A Channel eloned circuit. PHILCO TV TUNERS Model-76-12983.3 ${ }^{\text {B }} \mathbf{4 . 9 5}$ MAGNAVOX TV TUNER 341373 - 6 (6CO8GigK5 tuhes).
GE - TV TUNER
Mnder *6X314-3GK5-51a8) - $\$ 7.95$
TV TUNERS VHF/UHF all new standard $\$ 7.95$
makes. including Tuhes
WELLS GARONER TV TUNER 25AI283
(61/R-6HAS tuhen) \square
immediate delivery
Scientific light packing for safe delivery al minimum cost

WESTINGHOUSE ALL TRAN. SISTOR HOME/OFFICE MESSAGE CENTER

Leaves messages for other for replay . Built in
speaker/microphone for talk-into convenience speaker/microphone for talk-into convenience. Re-
cords up to 3 minutes of messages . Illuminated cords up to 3 minutes of messages . illuminated
signal shows when a message is waiting. Control adjusts playback volume without affecting recording volume Capstan Drive:
BRAND NEW SOID AS IS

of
aceo

\qquad

MARKET SCOOP COLUMN \square MAPCHED PA1RS TRANSISTORS NPN

2ENITH COLOR DEMODULATOR CHIP

 1)BLUE LATERAL MAGNE I ASSY ASY
placement for moat color TV:
15 UNIVERSAL TV ANTENNA Biick of set ${ }^{5} 2^{7} 10$ COOURLINO CONVERGENCE ASSE MBLY versal ive rectifies
 2 COLOR-TV CRT SOCKETS Wired leads, ${ }^{3} 1$
for all meor TV's
3 ROA 110° CRT SOCKETS Wired leads. :
for all TV:s. 10
BR1
90
BRIASTAYIC PICKUP MOOEL 200-897 Con.
tains 89 c ceramic cartridge LIST s 9.9520 - OIPPEO mYLAR CAPACITORS .01-s$20-$
$200-$
$20-$

$20-1$
$1000-1$ 20 Di

 TACHOMETER 21/4" SOUARE PANEI METER I-VDC. Full seale 33 (hm eoil :2
Pes istance 0 GOO R.PM
 10- SEES PHONO PLUGS \& PIN JACKS: 1
 4.l.u. $\mathbf{t 5 6} \mathrm{KC}$.
STEREO TONE ARMS Mant popuiar type- ${ }^{\text {turn over carridge }} \mathbf{2}$ turn oner carridge
$4-50^{\prime}$ MANKS HOOK-UP WIRE \qquad 100'-SPOOL SPEAKER WIRE 2 cond $\$ 1.50$
mini Tube ASSI RADIO \& TV TUBES Every s 1 Tube a goond number
5 - AUOIO OUTPU

$6^{6 \prime \prime}$ UNIVERSAL SPEAMER TOO quality $\$ 1$
--

FREE GIFT WITH EVERY ORDER
SHANNON MYLAR RECORDING TAPE

GRANTHAM OFFERS YOU College-Level Training

 and a college degree.
Electronic Circuit Design,

 Engineering Analysis (including mathematics thru calculus), Classical and Solid-State Physics, Engineering Design, etc., etc., are all part of the Grantham home-study degree program in Electronics Engineering.(Regardless of what you may have read in another schools ad. Grantham does teach college-sevel circuit desig" by home sudy.)

By adding collegelevel home training and a college degree to your experience. you can move up to greater opportunities in electronics.

Grantham offers the A.S.E.T. degree by corre spondence. After carning this degree. you may continue with additional correspondence plus a one-week residential seminar and certain transfer credits. to earn the B.S.E.T. degree. Then, the B.S.E.E. is available through further residential attendance.

GRANTHAM SCHOOL OF ENGINEERING

2000 Stoner Ave., Los Angeles CA 90025 - Telephone (213) 477-1901

Established in 1951 - G.I. Bill approved. Mail the coupon below for free bulletin.

ELECTRONICS

GC ELECTRONICS
DIVISION OF HYDROMETALS, INC. ROCKFORD, ILLINOIS 61101 U.S.A

There are more low-cost Heathkit projects than ever....

starting for as little as $\mathbf{\$ 5}$!

These low-cost Heathkit projects represent great values on electronic items you could pay up to twice as much for in assembled form. But they are also great kits for the first-time Heathkit builder, or the youngster who has been wanting to try a sophisticated electronics project. All the kits shown can be assembled in one or two evenings' time with conventional hand tools and a soldering iron. The assembly instructions begin with a quick course in soldering then take the builder into the famous Heathkit check-by-step assembly manual. After the kit is completed and working, the builder can go on to the circuit description sections which tell him how and why his kit works. And finally, only Heath gives its customers this unique pledge: "We won't let you fail". If a Heathkit builder has any problem before, during or after assembly, he has a nation-wide technical consultant staff backing him up. These technicians, at the Benton Harbor plant and Heathkit Electronic Centers in major metropolitan areas are the "big brothers" of the Heathkit. fraternity. They are always pleased to lend a helping hand... free. For as little as $\$ 5$, a Heathkit product could be the most worthwhile investment you'll ever make.

Visit your nearest Heathkit Electronic Center... or send for FREE catalog

HEATHKIT ELECTAONIC CENTEAS - ARIZ. Phoenix: CALIF: Anaheim, El Cerrito, Los Angeles, Phoenix; CALIF.: Anaheim, El Cerrito, Los Angeles, Pomona, Redwood Cliy, San Diego (La Mesa),
Woodland Hills: COLO.: Denver; CONN.: Hartiord Woodland Hills; COLO.: Denver; CONN.: Hartford
(Avon); FLA.: Miami (Hialeah): GA. Allanta; ILL. (Avon); FLA.: Mami (Hialeah); GA.: Allanta; ILL. KANSAS: Kansas Cliy (Mission): MD Baltimore KANSAS: Kansas City (Mission); MD.: Baltimore, Rockville: MASS.: Boston (Wellesley); MICH.: Detroit; MINN. Minneapolis (Hopkins); MO.: St. Louls: N.J.: Fair Lawn; N.Y.: Euffalo (Amherst), New York City, Jerlcho; L.I.: Rochester. OHIO: Cincinnati
(Woodlawn), Cleveland: PA.: Philadelohia, Pitts(Woodawn), Cleveland: PA.: Philadelphia, Pittsbouston; WASH.: Seattle. WIS.: Milwaukee

World's largest selection of electronic kits

EICO 242 FET-TVOM. Peak-to-peak EICO 379 Sine/Square Wave Generameasurements of $A C$ volis and milli- tor. Simultaneous sine and square wave amps. $6 \frac{1}{2^{\prime \prime}}$ meter. 7 non-skip ranges outputs. Covers 20 Hz to MHz in five High input impedance. Low 1 volt ranges. Low distortion sultzer feed scale. DC/AC Multi-Probe. AC or bat- back circuit. Square wave rise time tery operated. Kit $\$ 79.95$, Wired better than 0.1 microseconds. Kit $\$ 109.95$. \$74.95, Wired \$109.95.

EICO 330 RF Signal Generator. 5 bands EICO TR-410 Triggered Sweep Scope. cover a range from 100 kHz to $54 \mathrm{MHz}, 100 \%$ solid state. DC to 10 MHz band Calibrated modulation adjustment con- width. Sweep synchronized gate outtrol. 400 Hz audio output. Provision put. Z-Axis input. Use as vectorscope for modulating RF with internal or for color TV servicing. One probe for external signal source. Kit \$64.95, Wired \$99.95. direct and 10:1 measurements. Wired \$429.95.

FREE 32 PAGE EICD CATALDG

For latest catalog on Eico Solid State Test Equipment, Automotive and Hobby Electronics, Burglar-Fire Alarm Systems, Stereo, and name of nearest EICO Distributor, check reader service card or send 25 for fast first class mail service.

EICO, 283 Malta Street, Brooklyn, N.Y. 11207

Cirile' $7 /$ on leceder serine curd

next month

FEBRUARY 1974

New Kind Of Color TV

IC circuit features make this set something special. We explain the operations of special functions that have not been seen in an American TV before.

- What Is A ROM?

A Read-Only-Memory of course. But do you know how they work and what you can do with them? No! Find out in our February issue

CD-4 Records The Problems \& The Promise
Discrete 4-channel sound from records means CD-4. But there are problems Be up-to-date on the latest developments.
 10 release (all kleps spring loaded).
Kelps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4$ " long. $\quad \$ 1.39$ Kleps 20. Same, but $7^{\prime \prime}$ long. $\$ 1.49$ Kleps 30 . Completely flexille. Forked-tongue gripper. Accepts banana plug or bare lead. $6^{\prime \prime}$ long. $\$ 1.79$ Kleps 40. Completely flexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / /^{\prime \prime}$ long. $\$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long. $\$.99$ Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $5 \frac{1}{2} 2^{\prime \prime}$ long. \$.89 All in red or black - specify. (Add 50¢ postage and handling). Write for complete catalog of - test probes, plugs, sockets,
connectors, earphones, headsets, miniature components. A vailable through your local distrihutor, or write to.
RYE INDUSTRIES INC. 129 Spencer Place. Mamaroneck. N.Y. 10543 In Canada: Rye Industries (Canada) Ltd.

STEREO AMPLIFIER CHIP KIT Stereo Amplifier
chip,2 watts per
channel.DIP. We
include all parts
shown in diagram, for each
channel, except speaker,
plus data sheet.
STOCK NO.F5139 complete partskit,

TUNG-SOL DIGIVAC FLUORESCENT READOUT TUBE.

Tung-Sol DT1704B 7 segment fluorescent 9 pin miniature readout tube. Character size $.360 \times 570$. Height $13 / /^{\prime \prime}$. Fil. volts 1.6 AC or DC. Segment voltage 12 to 50 volts, 25 volts typical. Electrically identical to G.E.Y4075 \& Y-
1937. Readout colr is green, but can be filtered to any color. We supply a socket for each tube, and many pages of application data
STOCK NO.F5140 \$2.65 ea. 2/5.00 6/14.00

HEWLETT hp, PACKARD

SOLID STATE NUMERIC INDICATOR 4 useable digit clusters of 7 segment readouts, contained on a 14 pin dual in line pack. Readouts are end stackable, to make up to 8 digits. Used by HP in their own digital devices. Available in 3 styles, 4 digits with space on left ($\times 8888$), 4 digits with space on right ($8888 x$), and 4 digits with space in middle, (88×88), ideal for hour and minute clocks; $x=$ space. With data and diagrams. $\$ 7.95$ per 4 digit cluster STOCK NO.F5141 left space, F5142 right space, F5143 center space. Include sufficient postage. Excess will be refunded. Send for free new 56 page catalog. Minimum order $\$ 5.00$.

ANOATD Do-lt-Yourself-Save Time, Money, Gas.

EICO 1064 Dual purpose Battery Eliminator and Charger incorporating an extra low ripple filter circuit. Ideal for servicing and powering 6-12 volt auto and marine equipment. $\$ 64.95$ Kit $\$ 84.95$ Wired

EICO 1080200 watt Solid State Power Inverter and Battery Charger. Converts 12 volts DC to 117V, AC current. For use in cars, mobile homes and boats to operate recorders, appliances, etc. Kit $\$ 44.95$ Wired \$59.95

FREE 32 PAGE EICO CATALOG

For latest catalog on EICO Test Instruments, Stereo, EICOCRAFT Projects, Environmental Lighting, Burglar/Fire Alarm Systems, and name of nearest EICO Distributor, check Reader Service Card or send 25 for First Class mail service.
EICO, 283 Malta Street, Brooklyn, N.Y. 11207
EICO 888 Portable Universal Engine Analyzer. Keeps your car or boat engine in tip-top shape. Complete with "How-to-Use" tune-up and troubleshooting manual. Kit $\$ 54.95$ Wired $\$ 79.95$

EICO 889 Solid State C-D Ignition System adds power to any engine Boosts gas mileage up to 20% Points and spark plugs last up to 5 times longer, instant cold weather starting. Kit \$29.95 Wired $\mathbf{\$ 3 9 . 9 5}$ सालत

Circle 71 on reader service card

DOTHATCH

an exclusive Lectrotech development

The ultimate in pattern stability, at all temperatures, provided by Digital IC Counters. No internal adjustments. RF output channel 3 or 4 Video output 3v. P-P. 4.5 MHz crystal sound carrier. With shoulder strap and self-contained cable compartment. Net 129.50

See your distributor or write Dept. RE-1

LECTROTECH,INC.

5810 N. Western Ave., Chicago, Illinois 60659 (312) 769-6262

Designed For B/W and Color Strip Type VHF Tuners

- RESTORES NORMAL SIGNAL PATH IN TUNER CONTACTS
- DISSOLVES SULPHER, OXIDES AND OTHER FILMS
- NON-EVAPORATING CLEANER
- WILL NOT CAKE OR HARDEN
- MAKE A PROFIT ON TUNER MAINTENANCE

Available at your local electronics distributor or for further information contact:

UNIVERSAL TUNER TABS MFG., INC. 12400 Minnetonka Blvd
Hopkins, Minn. 55343

NEW CIRCUIT IDEAS, I.C.'s, DISCRETE COMPONENTS WITH NO SOLDERING!

Only $\$ 17.75$ The E\&L SK-10 SOCKET

Just plug in $1 / 4$ watt resistors, ceramic capacitors, diodes, I.C.'s, transistors and more, and your circuit is built! No soldering! No special patch cords needed. All components reuseable! Interconnect with any solid \#22 gage wire.

- Nickel/silver terminals - low contact resistance
- Low insertion force
- Initial contact characteristics beyond 10M insertions
- Vertical and horizontal interconnecting matrices
- Handles wide range of wire leads from .015" to .032"

MONEY-BACK GUARANTEE

Try it with absolutely no risk for 5 days. If not satisfied, return your SK-10 socket and get a full refund. Trying is believing. How can you go wrong? Send check or M.O. today!

- Add $50 \notin$ for postage and handling
- 25\% deposit for C.O.D.'s

Ask for FREE IDEA-PACKED, ILLUSTRATED CIRCUIT DESIGN CATALOG.

E\&L INSTRUMENTS,INCORPORATED 61 First Street, Derby, Conn. 06418

Think of it as the best tester in your bag. Only \$299

Now you can get a high performance Model 8000A Digital V.O.M. from Fluke, America's foremost maker of quality digital mutimeters, especially designed for TV, radio, stereo and audio service. No other digital V.O.M. gives you the resistance range in check breakers and switches, the high resolution voltage to look at emitter base and other transistor voltages, excellent ac accuracy and full accuracy with a 30 second warm-up.
Measures in 26 ranges $100 \mu \mathrm{~V}$ to $1200 \mathrm{~V}, 0.1 \mu \mathrm{~A}$ to 2 A , and 100 millis? to $20 \mathrm{meg} \Omega$ with a basic dc accuracy of 0.1%. Full year guarantee. Low cost options include rechargeable battery pack, printer output, deluxe test leads, HV, RF \& 600 -amp ac current probes, carrying case, and rack mount. Unique self zero eliminates offset uncertainty. Electronics securely mounted in highimpact case. Service centers throughout U.S., Canada, Europe and Far East for 48-hour turnaround repair.

FLLKE
P. O. Box 7428

Get all the details from your nearest Fluke sales office. Dial toll-free 800-426-0361 for address of office nearest you. Circle 77 on reader service curd

Accuracy like a VTVM... Convenience like a VOM...

NEW BATTERY-OPERATED FET SOLID-STATE VOLT-OHMMETER ${ }^{* 116}$ Easy-to-build KIT

Now you can get all the benefits of a VTVM (laboratory accuracy, stability and wide range) but with its drawbacks gone: no plugging into an $A C$ outlet, no waiting no plugging into an $A C$ outlet, no waiting
for warm-up, no bulkiness. New Field Eftect Transistor (FET) design makes possible low loading, instant-on batterypossibie low loading, instant-on batteryboth bench and field work.
Compare these valuable features:

- High impedance low loading: 11 meg. 500 imput 0 . DC, 1 megohm on AC 20,000 ohms.per-volt vom - Wide-range versatility: A P.P. AC voltage ranges: 0.3 .3 $33,330,1200 v$: 4 RMS AC voltage ranges: $0-1.2,12,120,1200 \mathrm{~V} ; 4 \mathrm{DC}$ voltage ranges: $0.1 .2,12,120,1200 \mathrm{~V}$: 4 Resistance ranges: $0.1 \mathrm{~K}, 0.100 \mathrm{~K}, 0.10$ meg 0.1000 mes. 4 DB ranges: -24 to +560 B
Sensitive easy-to-read $41 / 2^{\prime \prime} 200$ micro. amp meter. Zero center position available. Comprises FET transistor, 4 silicon transistors, 2 diodes. Meter and transistors protected against burnout. Etched panel for durability. High-impact bakelite case with hande useable as instrument stand. Kit has simplified step-by-
step assembly instructions. Both kit and step assembly instructions. Both hit and factory-wired versions shipped complete with batteries and test leads. $51 / 4^{\prime \prime} \mathrm{H} \times$

equipment report

RCA WR-525A MARKERISIGNALYST.

Circle 89 on reader service card

THE PEOPLE AT RCA TEST EQUIPMENT have come up with another very useful unit. This is one of those little "attachment" devices, which can also work by itself. It's the WR-525A Marker/Signalyst; a solid-state rf signal generator, which covers all of the vhf TV channels, and can also be used on harmonics for uhf. It is a true Black-Box, meaning a simple, selfcontained unit with useful outputs. (Actually, it's a very pretty light blue, but that's immaterial)

By plugging the WR-525A into the WR-514A TV Chanalyst, or similar sweep generator with continuoustuning sweep on the vhf channels, you can get picture-carrier markers for each channel. By turning on the 4.5 MHz marker in the sweep generator, both sound and picture carrier markers can be used. This is a valuable test, for cases where you must know whether a set does have the correct response on all, or certain channels. For example, a set which comes from a rural or suburban area, and uses a channel not available on the air at the shop.

Two separate transistor oscillators are used, one for low channels, the
other for highs. The output of these goes to an rf amplifier stage. A modulator circuit is provided. You can modulate the rf output of the WR525A with any kind of signal desired, up to 4.5 MHz : audio, video, colorbar, crosshatch, etc. You can even use actual program material, by feeding the video detector output of a working TV set to the modulation input of the WR-525A. You'll come out with picture and sound, which can be checked on all vhf/uhf channels of the tuner under test.

This makes the instrument very handy for checking out tuners, by the signal-tracing method. The rf signal can be fed into the mixer input, then to the rf input, and finally to the antenna. This will tell you very quickly if the tuner is working, and how well. In fact, this test will give you a better idea of how a tuner is working than a sweep-alignment test. Faster, anyhowif the tuner under test produces a clear picture or pattern on all channels; it's good!

In a few cases, when using the video signal from a color-bar generator for modulation, you'll note spurious responses 3.58 MHz above
the correct frequency. This is caused by a beat in the tuner or signal generator; ignore it. Tune the dial of the WR-525A to the dot which indicates center frequency for each channel, and you'll get the right one. Incidentally, these dots are very accurate, I checked them.

Video modulating signal should be not more than 1.0 volt p-p. If it's greater than this, you may see signs of overloading. When using a color-bar generator, the attenuator will hold it down to the correct level. If you are using the video signal from another set, it may be too high. A schematic for a simple attenuator is including the instruction book.

This handy little unit has several other uses, and you'll probably find more as you go along. For example, you can feed an audio modulated marker signal into the WR-525A, and use it for setting traps, by the "dip" method. Connect the scope to the video detector output, then tune the trap for minimum audio signal; this dip shows the proper setting for the trap. An accurately calibrated marker generator is needed, of course.

The WR-525A is powered by an internal 9 -volt battery, RCA VS- 323 or equivalent. An external 9-volt dc supply can be used. A jack is provided on top of the case, and they even included the correct tiny phone plug to fit it. Battery life should be very good; that is, unless you leave the switch on, which isn't recommended.

R-E

$$
\begin{gathered}
\text { We } \\
\text { need } \\
\text { you. }
\end{gathered}
$$

If you can spend some time, even a few hours, with someone who needs a hand, not a handout. call your local Voluntary Action Center. Ot write to "Volunteer," Washington, D.C. 20013
The National Center for Voluntary Action

READER QUESTIONS

(comimilled firmm pase 74)

N()COIAR

This one's got me. It's a Curlis-Mablies CACC-3.3. a lot like an RCA and the complaill is simply "No color". Still. I yet good color-bar patterns ofl the scope, at the output of the handpess amplifier, and at the color control. Not a thing at the input of the demodulators, though. Can't figure where it's losing it. There's an odd litule "box" monanted an a bracket above the comrol chuster. This is mot shown on the schematic. Help!' - R., M. C.. I Honobia Okla.

This is ffly, hut 1 maty know what is going on. since 1 lell over the same thing not long ago. Trice out your coatial leads from the color control. and see it they don't got thromgh this extra "litile box". If so. this is the Attomatic I int Control unit they used on some models.

If yourll check. I think you'll find that one of the lamsistors in the ATC unit is batd. This is a *Chioma Ansplities and mast he operating. regardless ol whether the ATC mit is turned on or not! (This is the satte bessice curcuit lound in the Magnavon Tyto A PC unit. though the circuitry is differont. Thisone had a chroma amplition stage alsol

If you cann i get the service data on the AT (unit. it is possible to "jump" it. by running at new lead difectly fiom the corsor control to the demodulator input. This will disathle the ATC. hut ler the color through.

IVTERVITTENT VIDEO

This (TC-38 will play for some lime. then pows! White sored, with a vers faint viden sigual visible. Turn if off for a while. and it will come back. If's thermal. but where? - J. V. . Masner Core, Ark.

When the vided goes out. read the crmituer voltages on eatch of the i.t.
 that it sthe 3 ad videoi.f. Wenssistor'. I'll also bet that it s intermittently opening. I It so. you will see its emitler toltage drop to /ero when it cuts onll. You catl speed this up by spraying it with condant.

SNAI', (RACKI.f: P()P
J'e replaced a bad driver transistar in flis Worse 77.) stereo amplifier. Now, if plays, but it has a very bad arackling' sound at all times. Trical a new preamplifier transistor. which didn't help. Hare son run illo this? - R.J. Bogahesa La.

Yés. There are a coouple more preamp tramsistors over on the other hoard, hut chech that litile $4.7-\mu$ F elecsolytic conplins capacifor fiist. We hat ve lound some ol the se which would ciasse the crachling sound. but sopp when you melted the solder on the
joints. Needless to sity. we replaced the capacitors anyhow.

TUNEK A(BC VOHTACF

According to Sams. the of age voltage on the luner (Zemith $2 / Y /(37)$ is supposed to be $+4 V$. It won't play unless I set it for-0.3V at the muer. What should I adjust" - E. . . . Eilgin (lre.

Nothing. The $+4 V$ on the rit age should be masured with NOSICiNAL imput. Actual age voltage, with signal. at this point will run from +25 V to $+0.3 V$. Check the 1.5-megohm bucking resistor from the age line $10+230 \mathrm{~V}$. If this goes olf-value, it upsets the age very hadly

HV PROHLEMS

There's ample grid drive in this Sylvaliala I)(O-3. In fact. it looks like a limle too much. When I II to adjust the highvoltage to get the vollage down. the breaker trips. A m I over-ariving it. of whar? - E., W . . Tuscaloosa. Ala.

There are a couple off things which could be catusing this. For one. check that .05- $\mu \mathrm{F}$ hypass in the high-voltage legulator lube ciat hode. If this upous, it will foul up the action of the regulator. and catuse the breaker to Irip.

Also chech that litte neon litmp in the high-voltage regulator circuit. If this is bad. it upsets things. Replace with an esact duplicate: this is a polarized type

MOUGOLES, WIGGIES, NOHV

This Zenih $1+\mathrm{N}^{2} 29$ chaswis is driving me up the wall. While it's uarming up. the waveforms aroand the harizomtal oscillator look fine. On frequenty. correat amplitude. efe. As somoll as the output mbe warms tip. the whole thing goes all to pieces; wild oscillations. etc. . and mo high voltage. DC voltages close to ormal on 17.JN honianntal output mbe. quite a bit off oll ascillator. Halp! - R.B.. Orinda. Calif.

Chere up: "halp" is on the way. The fiast one of these l ran into look me two weeks. Try thistest: kill the horizontal oscillator and drive the output with signal from another set. If this works. kill the output stage and scope the horicontal oxcillatlor. If it works, then it s certain.

You have an open fiacr catpacilor somewhere. 7 his is allowing a lesed. back loop to set up as soon as the output stage gets lof full operation. So you'll lind that the iwa stages will work separitlely. hal nol logether.

T()O MUCH BRIGHTNESS

I can't get the brightness to turn dan'll ont this Airline Cil/-17+23B color set. Also have bad vertical retrace lines. Checked all transistors. cathode voltages an picture mbe, and so an. The brightmess control will vary the grid voltage on the //Cll/I whe. I'm stack. - J.T. 's Rudior.

TV. Elk ('ity. Okla.

From the long list of voltages you gave. I'm heginning fo suspect one finity simple thing. Everything looks normat. Chech the setting of the three picture tube sereen controls: I think you"ll find them cranked wide open. Check the Brighteness Range control setting while you re there. (I got booby trapped on one like this. and not too darn long ago, cither.) Some previous tinkerer must have turned them up.

\section*{MORE: ON ••MANY, MANY

SYMPTOMS"

}Referring to your answer ont the "Many. many swmptoms" question, in the Alig. 1973 issue, on a CTC-38. I have found this kind of trouble in this chassis. It was dlue to a leaky capacitor behween the Ist viden atimplifier and the video-sync-chroma amplifier. This is a . $047 \cdot \mu^{*}$ V: C +1 in the Sams Phomofact Inot)-3. Replace it with a IonN whit for safens. - Dan Scott. Scoty"s TV Service, A/adison. Wisc.

Every child mallers

 1o The Salvation Army.
The lonely child

 in affluenl suburbia.The neglected child in the ghello.
The hungry child in a pockel of rmal poverly.
With Got's help, and within the limils of its resources.
The Salvation Army reaches oul to help children.
You cun help, loo,
by volunteering your lime
and lalents al the nearest Salvalion Army center.

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\$ 1.15$ per word ... minimum 10 words
NONCOMMERCIAL RATE (for individuals who want to buy or self personal items) 70c per word no minımum
FIRST WORD and NAME set in bold caps at no extra charge Addıtional bold face at $10 \$$ per word Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions. If paid in advance. Misleading or objectionable ads not accepted. Copy for March issue must reach us before December 28

ELECTRONIC ENGINEERING \& INSTRUCTION

LOGIC newsletter, design and construction sample copy $\$ 1.00$ LOGIC NEWSLETTER, Box 252. Waldwick. N.J. 07463

CALCULATOR owners: Use your
culator to compute square roots, trigonometric functiols, logarithms, exponentials, and more! Quickly, accurately, easily! Send today for the improved and expanded edition of the first and best calculator manual - sold throughout the world only $\$ 2.00$. Absolutely unconditional money-back guarantee - and rast service! MALLMANN OPTICS ANO ELECTRONICS Dept. - 3B, 836 South 113. West Allis. Wisc 53214
313.344 CORE MEMORY \$125.00

From SPECTRA computer, visually OK. 64x $68 \times 4 \times 18$ core stack. Figures out to 35 K Byte.

LED 7 SEGMENT READOUT
 SALE - 1 FREE W/EACH BOT

Similar to MAN-1. Factory seconds but functionally OK 7 seoment w/left decimal LLED.A.L $\$ 3.00$ 7 segment w/right decimal SLED•A•R 3.25 7 segment no decimal \#LED.A 2.7 Socket for above,
plated leads

IC SALE YOUR COICE 3 for $\$ 1.00$ u) 900 BUFFER TO.
ul 914 DUAL 2 INPUT GATE TO. 5
$\mu 1923$ JK FLIP FLOP TO-5
แ1 926 Hi speed JK FLIP FLOP TO-S
$\mu 1931 \mathrm{JK} / \mathrm{RS}$ FLIPP FLOP (DIP)
10 pin socket for TO-5 IC
$3 / 1.00$

GIANT NIXIE B7971

Used $\$ 1.00$
With $\$$ Brand Nematic for GIANT clock.
COMPUTER TAPE DECK $\$ 75.00$
Takes $1 / 2$ inch tape, made by Computer Entry Systems. Visually ok. with electronics, no data available.

LASER DIODES, new listing just arrived. send SAE.

AM-FM RADIO $\$ 5.50$

Fully built, with AC supply, no cabinet, no speaker. Send for free catalog. Postage extra on above items.

MESHNA PO Bx 62,
E. Lynn, Mass. 01904

TV tuner repairs-Complete course details. 12 reparr tricks. Many plans. Two lessons. all for \$1 Refundable, FRANK POCEK, Box 3236 (Enterprise;, Redding. Calif. 76001

WANTED

QUICK cash ... for electronic equipment com ponents, unused tubes. Send list now' BARRY, 512 Broadway. New York. N Y. 10012. 212 WAlker 5-7000
"CASH" paid for unused teletype parts and as" semblies. "PHILMAR", Box 96. Morrisonville. N Y 12962 518-561-3479
PROPOSED computer service for individuals and small businesses. Providing file, terminal and program support. If interested contact CLIFFORO BAILEY, 126 W. Needles, Bixby. Okla. 74008.

FACTORY FIRSTS
Only quality parts are avallable from DIGI-KEY. We do not sell retested, rebranded or other reject parts.

DIGITAL TTL

	326	7446N	\$1.30	7496N	
7401N	324	7447N	\$1.30	74107N	
7402N	32¢	7448N	\$1.35	74121N	704
7403N	324	7450N	32	74122N	724
$7404 N$	35	7451N	32	74123N	\$1.11
7405N	35	7453N	32	74141N	$\$ 1.51$
7406 N	52	7454N	324	74150N	\$1.56
7407N	52	7459N	32\%	74151N	\$1.20
7408N	364	7460N	32	74153N	\$1.58
7409N	364	7470N	364	74154 N	\$2.25
7410N	324	7472N	404	74155N	\$1.46
7411 N	$35 ¢$	7473N	52	74156N	17
7413N	634	7474N	524	74157N.	56
7416 N	504	7475N	854	74158N	\$1.56
7417N	504	7476N	604	74160N	51.
7418N	354	7480N	744	$74161 N$	11.95
7420 N	324	7482N	\$1.02	$74162 N$	95
7423N	754	7483N	\$1.58	74163N.	\$1.95
7426N	36	7486N	60¢	74164N.	\$1.95
7430 N	324	7489N	\$4.50	74165N	\$2.48
7437 N	514	7490N	85	74166N.	52.03
7438N	51.	7491N	\$1.37	74180N	\$1.20
7440 N	324	7492N	85	74181N.	53.38
7441N	1.45	7493N	85	74182N.	\$1.17
7442N	\$1.20	7494N	\$1.20	74192N.	\$1.80
7445N	\$1.62	7495N	\$1.20	74193N	$\$ 1.80$
Discounts	offered	in	cantities	74198N	\$2.78
of 100	TTL	in mi	ed lots.	74199N.	\$2.78

LINEAR INTEGRTTED CIRCUITS
NE555V MinidIP .. $\$ 1.00$ 723C DIP $\$ 1.15$ NE565A DIP $\$ 3.57$ 741C MiniDiP....60c NE567V MinidiP .. $\$ 3.57$ 747C DIP $\$ 1.10$ N5558V MiniDIP95e 748C MiniDIP60 709C MiniDIP 44 Quantity Discounts

GENERAL PURPOSE SILICON TRANSISTORS

2N3638 PNP 20 , 10/\$1.65 100/\$15.00 2N3638A PNP22t $10 / \$ 1.80100 / \$ 16.50$ 2N3641 NPN23e $10 / \$ 2.00100 / \$ 17.50$ 2N3643 NPN23e 10/\$2.00 100/\$17.50 2N5133 NPN 15 个 $10 / \$ 1.25$ 100/\$10.00 2N5134 NPN 15 10/ $\$ 1.25$ 100/\$10.00 2N5137 NPN 18 10/\$1.50 100/\$13.65 2N5138 PNP 15 10/\$1.25 100/\$10.00 2N5139 PNP …...... 15 10/\$1.25 100/\$10.00 2N3055 NPN $\$ 1$ 10/\$9.50 100/\$86.25

1 AMP SILICON RECTIFIERS

1 N4001 50PIV 12/\$1 100/\$6 1M/\$49 IN4002 100PIV11/\$1 100/\$6 1M/\$51 1N4003 200PIV 10/\$1 100/\$7 1M/\$53 iN4004 400PIV 10/\$1 100/\$8 $1 \mathrm{M} / \$ 55$ 1N4005 600PIV9/\$1 100/\$8 1M/\$61 1N4006 800PIV7/\$1 100/\$9 1M/\$75 IN4007 1000PIV6/\$1 100/\$101M/\$83

SILICON SIGNAL DIODES

IN4148 (1N914 equiv.) 20/\$1 100/\$4.50 1M/\$35

ELECTROLYTIC CAPACITORS

Values from 1 ufd through 2200 ufd. Competitive prices listed in latest flyer.

MOLEX IC SOCKET PINS

100/\$1.00 200/\$1.80 300/\$2.60 500/\$4.20 $700 / \$ 5.80 \quad 1000 / \$ 8.20$ ea addn $1000 / \$ 7.50$ DISPLAY DEVICES
5 VOLT 7 SEGMENT TUBE $\$ 3.75$ DISPLAY KIT (TUBE $+7447+7475+7490$) $\$ 6.15$

3/\$17.50
7 SEGMENT LED (MAN-1 TYPE) $\$ 4.00$
DISPLAY KIT (LED $+7447+7475+7490+$
RESISTORS) \qquad \$6.40 3/\$18.25
$1 / 4$ \& $1 / 2$ WATT 10\% RESISTORS
1/4W 5\& 30/\$1.20, 100/\$3.00, 500/\$13.75 as low as 1.74 ea in quantity-see catalog $1 / 2 W$ 4t $30 / 90 \&, 100 / \$ 2.50,500 / \$ 11.25$ as low as 14 ea in quantity-see catalog
CDD orders accepted for same day shipment. Call 218 681 6674.
Free Catalog-Large Quantity Discounts-Orders Less Than $\$ 10.00$ Add 25 $\$$-Others Postpoid
DIGI-KEM
PRICE PACESETTER FOR QUALITY IC'S
BOX 126H
('ircle $8 \mathrm{~S}^{2}$ on rewder wervice card

TUBES

SAVE money on parts and transmitting. receiving tubes foreign-domestic. Send 25 c for Giant Catalog. Refunded first order. UNITED RADIO COMPANY, 56-R Ferry Sireet. Newapk N.J. 07105

RECEIVING \& industrial iubes, transistors All brands-biggest discounts. Technicians. hobbyisis, experimenters - request free giant catalog and save! ZALYTRON, 469 Jericho Turnpike, Mineola. N.Y. 11501

BUSINESS OPPORTUNITIES

START small, highly profitable electronic production in your basement. Investment. knowledge unnecessary Postcard brings facts BARTA-AZ, Box 248 . Walnut Creek. Calif. 34597 BUILD your own speaker systems. Lowest wholesale prices on famous brands. Write for 176 page catalog. MCGEE RADIO COMPANY 1901 McGee Street. Kansas City. Missourl. 64108

PLANS \& KITS

ELECTRONIC organ kits, keyboards and many components. Independent and divider tone generators. All diode keying. ic circuitry. Build any type or size organ desired. Supplement your Artisan Organ. 25 c for catalog. DEVTRONIX ORGAN PRODUCTS, Dept. B. 5872 Amapola Dr San Jose. Calf. 95129
FREE catalog. Most unusual electronic kits av ailable Music accessories, surf. wind synthesizers, wind chimes, many others.
PAIA Electronics, Box B14359, Oklahoma City OK 73114
SOLDERLESS IC prototyping techniques 76 -page illustrated manual $\$ 4.95$ postpaid. Ex perimenter publications catalog 25c. MP PUB LISHING CO., Box 378 . Belmont. Mass. 02178 JOYOUSTV viewing! Silent commercials, sound returns automatically! Novel circuit. Fun project. Description, parts list and schematic $\$ 2.00$ HOBBY ELECTRONICS, Box 2172, Capistrano Beach Ca. 92624

COMPUTER laboratory! New! Advanced tech nology. Integrated circuits. Transistors. Dozens experiments. Free information. LINDSAY. Box 12-T. Bradly. III. 60915
FUN kits novel, entertaining, educational Build electronic touch switch audio alarm digital clock. others Send for free flyer ADVENT ELECTRONICS. Dept RE PO Box 252 . Lafayette Hill. Pa. 19444.

FOR SALE

LOGIC probes from $\$ 9.95$ Fiee catalog electro industries, 4201 Irving Park Chicago. III. 60641
BURGLAR alarm system - Do lt yourself Instal. led in minutes Free literature EMRAD led in minutes Free
CORPORATION. P.O Box 1341 Kokomo Ind CORP
46901
CANADIANS. Parts for general experimenters. Free list. HOBBYTRONICS, Box 5385. Station F Ottawa. Ontario
CT5005: \$1 195. laser diode: \$5.95 Digital linear IC's: LED's: readouts. Free catalog ELECTRONIC DISCOUNT SALES, 138 North 81st Street. Mesa Ariz 85207
FREE bargain catalog. Transistors, computer boards diodes. thermocouples. parts CHANEY'S, Box 15431. Lakewood. Colo 80215 MANUALS for Govt. surplus radios, test sets. scopes List 50c. BOOKS. 7218 Roanne Drive Washington, D.C. 20021
SEMICONDUCTOR and parts catalog J. \& J ELECTRONICS, Box 1437. Winnıpeg, Manitoba Canada
SURPLUS opamps - 25 different schematics for the hobbyist. $\$ 2.00$ postpaid GRAY, P.O Box 576-J. Ann Arbor. Mich 48107
SCHEMATICS $\$ 1.00$. TTL logic probe power supply 0.25 vdc 1 A. KNOWLAR ENGINEERING, Box 671 Stouffville Ontario LOH1LO
REGULATED power supplies 5V.1A complete with leads. cord case etc. fully assembled $\$ 24.50$. ($\$ 20.95$ from this ad) Ten day trial BAUER ELECTRONICS OF AMERICA, BOX 48 , Nebraska Cuty, Nebr. 68410

GREGORY ELECTRONICS Reconditioned $\&$ Used FM 2-WAY RADIO SAVINGS Send for Now Catalog

MOTOROLA SPECIAL EXCELLENT CONDITION

X71GJT-1190B. 12 volts, 100 watts, full transistor power supply. 2 freq. 40-50 MHz transmit, 3 freq. receive (dual freq. $40-50 \mathrm{MHz}$, single freq. $30-40$ MHz) with dual front end for simultaneous receive.

neous receive.		Now
Including accessories. Bench checked.	Reg.	$\mathbf{\$ 2 2 8}$

GREGORY ELECTRONICS CORP.
251 Rt. 46, Saddle Brook, N. J. 07662
251 Rt. 46, Saddle Brook, N. J. 07662

For faster service USE ZIP CODE

on
all mail

FREE catalog offers diodes, resistors, IC sock ets, capacitors, crystals, power supplies, pots. Unbelievably low price. PARSAD ELECTRONICS, Box 32, Addison, III. 60101 ETCHED circuit supplies, chemicals, solder specialized products. Free catalog. TECHNICAL SERVICES, Box 687R, Arlington. Mn. 55307
HIGH quality components at low cost. SOLAR ELECTRONIC ENTERPRISES, Box 778, Edmonton. Alberta. Canada T5J 2L4
NAME brand digital test equjpment, discount prices. Free catalog and price list. SALEN ELECTRONICS, Box 82. Skokie, III. 60076
PARTS trays - 3 for $\$ 1.00,12$ sections each tray. SANTANA, P.O. 3477, Los Angeles. Calif. 90028 CONVERT any television to sensitive big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans \$2.00. RELCO-A25. Box 10563. Houston. Tex. 77018
TWENTY disc. or 10 bar magnets. \$1.00 MAGNETS, Box 192-E. Randallsiown. Md 21133
FREE catalog lists resistors, tubes, transistors, rectifiers, condensors, tools, tuners, etc. etc. HYTRON HUDSON, Dept. RE 2818 Kennedy Blvd.. Union City, N.J. 07087.
GIANT 126 page Canadian surplus caralog $\$ 1.00$ ETCO ELECTRONICS, Dept. RE, Box 741 Montreal, Canada.
NEW FM deviation meters $\$ 75.00$. Free information. Write ECM, 412C N. Weinbach. Evansville Indiana 47711
WHOLESALE prices on electronic parts. Large discounts. Free catalog DONLYN ELECTRONICS, P.O. Box 15421, Phoenix, Ariz 85060
DIGITAL electronics! Complete schematics parts lists. theories-Discrete Component Digital Clock, \$3.00. Increase technical competence. hobby skills-Complete course in Digital Electonics is highly effective, $\$ 10.00$. Free literature. DYNASIGN, Box 60R2, Wayland. Mass. 01778 FACTORY outlet - stereo - quadraphonic multiplex auto decks, radios and accessories $\$ 15.00$ up - $\$ 1.00$ for dealer lists. BIDCO CONSUMER ELECTRONICS, 565 East McMurray. McMurray. Pa. 15317
NEW! "Radiotelephone Exam Manual". First. second. radar. third classes with multiple choice questions-answers, diagrams, formulas. rules, regulations. Recap from actual FCC material. "Score high" memorize, pass phone exams. \$15.00. Act Now"! EVALUATION RE. SEARCH HILL, Dept-RR3, Box-19A56. Ahoskie N.C. 27910.

highly profitable ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Ideal home business. Write today for facts Postcard will do. Barta-BA, Box 248 , Walnut Creek, CA 94597.

FREE catalog. Tremendous electronic bargains AMERICAN, Box 4188X, Mountain View, Calif. 90040.

FREE book about digital logic and computers, and how you can design and build your own. EEW, Box 8204-CA, Pitisburgh. Pa. 15217.
LOGIC probe-LED's indicate logic state $\$ 10.00$, kit $\$ 6.00$. SOLIDTRONICS, Box 96 . Union City, Conn. 06770
TRANSFORMERS- $\$ 9.50-225 \mathrm{VA}-117 \mathrm{~V}$ pri. You can specify sec. voltage 10-300 \& C. T. Additional secondaries $\$ 1.00$. Shield covers add $\$ 1.00$. American parts \& labor.-Add 9lbs shipping. HOBBY FORMER MFG., P.O. Box 222-RE, Port Arthur. Texas 77640. Phone 1-713-983-1555
TUNERS repaired realigned and neutralized by specialists. Uhf or Vhi \$9.75, combo \$15.00. Major parts extra. Ship to RAINBOW TUNER LABS, 4158 Greeby St., Phila., Pa. 19135.

STEP-BY-STEP TROUBLESHOOTING
(comtinued on page 77)
Throughout the entire proceeding, your author (for once) wasn't able to use an oscilloscope-simply a $20-\mathrm{ki}-$ lohm/voltmeter. Obviously in the low ranges. this instrument has a lower impedance than any fet meter or vtvm and will supply enough current and voltage to forward-bias both transistors and diodes. If you wish to 'scope this supply, we'd suggest you solder a number of small wires to the various terminals of interest, so that another probe slip won't cost you time, frustration and money

A prime suggestion in working with any of these gate controlled switches is a little diagram Sony has been careful to include (Fig. 5), and we'll pass on to you. As you can see, ohmmeter measurements are between gate and K (cathode) and A (anode) in the polarities indicated and at the approximate resistances given. Similar measurements forward and backward decidedly means you have a bad (probably shorted) ges. If in doubt, compare its measurements (out of circuit) with another new one

These switches, it seems, can prove somewhat tender. In checking RCA SCR switching (also Heath and Philco) high-voltage circuits, use a variable line voltage transformer (Variac, eic.) and proceed slowly after 85 volts. You'll save lots of SCR's.

The rest of your troubles can at least be approached by the troubleshooting chart printed here. It is impossible, of course, to cover all the possibilities in switched and nonswitched power supplies. But the directions given can go a long way toward relieving your troubles. R-E

INTERNATIONAL ELECTRONICS UNLIMITED

TTL					
7400	S 25	7446	\$1.45	74122	§ 55
7401	. 25	7447	1.45	74123	1.15
7402	25	7448	1.50	74126	. 95
7403	. 25	7450	29	74145	1.25
7404	. 29	7451	32	74150	1.25
7405	27	7453	. 32	74151	1.05
7506	. 55	7454	. 45	74153	1.45
1407	53	7455	. 32	74154	1.75
7408	29	7460	. 30	74155	1.35
7409	29	7461	30	74156	1.50
7410	25	1464	45	74157	1.50
7419	35	7465	45	74161	1.65
7413	. 95	7470	50	74163	1.80
7415	50	7472	45	74164	2.95
7416	50	7473	55	74165	2.95
7417	50	7474	. 55	74166	1.95
7420	25	7475	. 95	74173	1.95
7421	. 32	7476	. 55	74175	1.95
7422	32	7478	. 89	74176	. 95
7423	. 37	7483	1.25	74177	. 95
7425	39	7485	1.20	74180	1.15
7426	35	7486	55	74181	4.25
7427	39	7489	3.25	74182	1.10
7430	25	7490	1.25	14190	1.65
1432	30	1491	1.40	74192	1.65
7437	. 50	7492	1.05	74193	1.65
7438	55	7493	1.05	74194	1:65
7440	25	7494	1.10	74195	1.15
7441	1.25	7495	1.05	74196	1.35
7442	1.15	7496	1.05	74197	1.15
7443	1.25	74100	1.40	74198	2.50
7444	1.30	74107	55	34199	2.50
7445	1.25	74121	65		
Low Power TTL					
74400	5. 40	74.42	\$1.75	74185	\$1.25
74402	40	74.45	1.45	74.86	. 95
74.03	40	74.51	. 40	74.90	1.75
74.04	40	74L71	60	74.91	1.50
74406	. 40	74.72	. 60	74.93	1.75
74.10	40	74.73	80	74.95	1.75
74420	. 40	74.74	. 80	74.164	2.95
74.30	40	74.78	. 80		
8000 Serias TTL					
8054	S. 45	8123	\$1.75	8570	\$2.95
8060.	. 30	8182	1.75	8600	1.15
8091	. 69	8214	1.95	8810	95
8092	69	8230	2.95	8812	1.25
8093	. 69	8280	. 95	8822	2.95
8094	. 69	8288	1.05	8830	. 69
8122	1.05	8520	1.45	8831	2.95
ALL OIP PKGS Specify ipec, sheets required with order. Add $\$.50$ per spec sheet for items lest than $\$ 1,00$ ea.					

NEW Yelr spegais

9601 LM75451
LM 745451 7438 7438
7453 7490 74121 Retriggerible One Shot Duat Peripheral Driver Ouad 2.in NAND Butfer Quad 2 -in NAND Butfer Expendible AND OR-INVERT gate Oecade counter
Up/down binary counter
5.95 em 1.75 em .85 ea 39 $3 / \mathrm{sin} .00$ $3 / \$ 1.00$ $4 / 5.00$ 1.10 en .39 .0 1.39 en
Bettery powerd version of 5001 with 12 MAN 3 M LED Complete with Date
519.95/wet
MM5312 Digital Clock Chip
28 pin any randaut 6 digit BCD with 4 MAN 3M LED

5001 LSI Calculator Chip
8 Unterred mOS MIX (dip)
50 Untested MOS MIX (dip)

NEW YEAR SPECIALS IN EFFECT THROUGH JANUARY

CMOS						4000 Series - RCA Equivalent					
74 COO	\$ 9.90	$74 C 73$	\$1.70	74C161	\$3.25	CO 4001	\$. 65	CO 4011	\$. 65	CO 4025	5. 65
74C02	. 90	$74 \mathrm{C74}$	1.50	74C162	3.25	CO 4002	. 65	CO 4012	. 66	CO 4030	. 65
$74 \mathrm{C04}$	1.10	$74 C 76$	1.70	${ }^{74 C 163}$	3.25	CO 4009	1.50	CO 4016	1.50	CO 4035	3.65
${ }^{74} \mathrm{C} 10$. 90	$74 \mathrm{Cl107}$	1.50	74 Cl 192	3.25	CO 4010	. 65	CO 4023	.65		
74C20	. 90	${ }^{74 C 157}$	2.25	74C195	3.00						
$74 \mathrm{C}_{42}$	2.15	74C160	330	$80 \mathrm{C97}$	1.50	Digital clock . . . on a Chip					

Calculator Chips

5001 LSI (40 pin) Add, subtract, mutiply \& divide 12 digir
 Oata supplied with chip

Data only Rafundable w/purchase
5002 LSI Similar to 5001 except designed for battery power
Dita swoplied with chio
Data only.Refundable w/purchase \qquad
56.95
1.00
1.00 ea.
$\$ 8.95$ en
5005 LSI (28 pin) Full four function memory.
12 digit display and calc. 7 regment multiplexed output Data supplied with chip
510.95

Date only Rafundable w/purchese $\quad 1.00 \mathrm{ee}$

Opto Isolators

MM 5311 (28 pin) Any readout 6 digit BCO with wpec. sheet
MM 5312 (24 pin) Any resdout 4 digut
ipps BCD with spec. sheet
MM 5313 (28 pin) Any readout 6 dig:
MM 5314 (24 pin) LED. incandescent
readout 6 digit with ipec sheent
MM 5316 (40 din) Normal mithent, snooze
alerm. sleep times 12 or 24 t
operation with spec.

UNTESTED SECONDS

ON ORDERS OVER \$25.00 DEDUCT 10\%

Satisfaction guaranteed. All items except as noted are fully tested. Minimum order $\$ 5.00$ prepaid in U.S. and Canada. Calif. residents add sales tax. Orders filled within three days from receipt.

INTERNATIONAL ELECTRONICS UNLIMITED
P.O. BOX 1708R

Monterey, Calif. 93940

MORE BARGAINS IN SURPI US ELECTRO-OPTICS from B \& F ENTERPRISES

CKEL CADMIUM BATTERIES
0.5 ampere hour 1.25 vol: sealed button cell 2 10i $\$ 1.00$ \square vented 4.0 ampere hour cell, plastic
case $\$ 2.75$ $\square 24$ vol! pack, sealed cells, mfg sono tone, size $12^{\prime \prime} \times 1 / /{ }^{\prime \prime} \times 1 /{ }^{\prime \prime}$ capacity
0.6 ampere hours
$\$ 1175$ CORE MEMORY STACKS

T. of our mosi popular seliout Two ivpes available are the 4096 words $x 9$ bits (36. 864 bits) eassly words $x 4$ birs (32.768 birs). manu RCA for Honeywell. Ideal for Minicomputors, some electronics but no power supplies are included on the card.

4096×9 Memory . . $\quad \$ 60.00$

 LED READOUTS

Popula OPCOA SL.A. 7 , withou decimel point. $0.27^{\prime \prime}$ nurnerd heigh, we formerly sold Beciluse of a forlunate purchase wit can offer thern al a supur-low price. Use for clocks. SLA.t R, calculators

KEYBOARD
This is Flex-Key series SK key Only $2.36^{\prime \prime} \times 3.76^{\circ \prime} \pm 0.45^{\prime \prime}$ thick
Swilch matrix for Cal Tex 5001 Switch martix for Cal Tes 5001
5002 or Mostek 5010 or 5012 chips avel, doubre shol keys, completely smooth quiel
seated, imper Ck ... $\$ 8.00$ 10 or more... NICKEL CADMIUM BATTERIES

Brand new, manufaciured by Gould National. Size: 1 dia. $\times 9.3 / 8$ " L Excettent for photo thash burglar Excelient for Fully guananieed ayail able at a fraction of original cost d, won't last long so order now

12V 0.75 AHSNCB . . $\$ 9.75$ 7.SEGMENT DIGITAL DISPLAY $-\$ 1.70$ each
 Bright bluegreen display tube, with numesical display characters. Tube exhibits very fast display speed and easy-ronead characters of $.57^{\circ 1} \mathrm{Hx}$ $.36^{\circ}$ W, with decimal point. Com
ecade counting unit or a 6 digit clock. Tubses are brand new, butk packed, and manufactured by Tung Sol, no 705. Sh. Wi. 4 oz .

7SOD.1705 . . . $\$ 1.70$ each; or 6 tor $\$ 8.50$ 10 for $\$ 14.00,100$ for $\$ 125.00,1000$ tor $\$ 950.00$ COLLINS CRYSTAL FILTERS

Anyone who is familias with super high quality communications receir ers is tamillar with the Collins filte 455 Kc center liequency 300 Hz bandwidth. Part number 526707 009 , type $\times 455 \mathrm{KF} 300$. Full tech nical information provider Collins Crystal Filter
LOUDSPEAKER SYSTEM COMPONENT SPECIAL!

purchise nade an excellen purch ore ol an excess invenspeaker aystan manuliciluter's are nol allowed to mugh we the mty's. name the specs should make il sell evadens The wooter is al $12^{\prime \prime}$ free edue (acoustic suspension) unit.
with 2" wice coll and a No. 2 magnet. The mid-range is a 5^{\prime} sealed back speaker and 3 - $1 /{ }^{\circ}$ flare dome twecter lor best high frequency dispersion. a mid-range is on R.L.C network, whre high frequency crossover is bu A.C and eweeter Plans for a suitable enclosure are provided. The level controls piovide trequency response to suit room coustics, with realism that will delight even the most critucat listener. Reswonse - 25 to 20 K + Hz.. Power - 40 watts RMS. Impedance - 8 ohms
Sh.Wi. 12 lbs

- LSCS.
$\$ 36.00$
2 1or $\$ 65.00$

?TELSA COIL KIT Heres a truly basic kit tor those who
like to "roll their own." All the par ts for like to "roll their own." All the par ts for an excliing adventure inlo high,
frequency. high voltage. Add yout own metal housing a small chassis or universal box is
design of Nikola Tesla (1857-1943) an design of Nikola Tesla 11857 1943) an versions many teet tall. His dream was to light and power entive cities with energy radiated from such coils - but no luck!
Todays Tesla colls are popular with experimenters and students. and especially for science fall and edwcalional coupled to a elovision flyback transtormer, which steps wip an external 12 VDC power supply to many thousand volts. SPECIAL NOTE Although current outpul is velatively ow, some hazard is inherent in alt high voltage devices. This kit is intended tor the ewperimenter who is mature enough io observe reason ble precaution in its use.
TESLA COIL. KIT
DECADE COUNTING UNITS WITH READOUTS
Always one of B \& F's most Impular nems, now revised to include drilled boands. I.C.
seckets, and riyh angle socke1 seckets, and rishliangle sockel
tor readout Arranged so that units can lee slacked side by side and sitaight pieces of wie bussed itrouith loi power. grounti and reset Several duferent units are avanablele as tollows

74196

74192

Basic 10 MHz counter. Usid in fiequency counters Same as 7490 except presenable 50 MHz unit Used where hisilier sheed and/ur mesertability is Br-Otrectional Counter. 32 MHz operation. Has two Inour lines, one thar makes the unit count up, the other down. Uses include timers. Whiere the countel is piesel to a number amil countrs down to itio, Inonitnithy a secfuence of events. ie, keeping entries and uosun tor departures. Adds satch copalloilty Used in
Adds fatch cesonmity Used in counter so displdys conlinute displaying frequency white new fre Basic decurter morlule. Drives tasic seven segment displar which is incluied for all modules.

NEwEST DCU:

This OCU combines all of the features of our other counting units, that is, hugh speed counting, up-down operation storage, and preset. In addition it incluctes a comparato (7485) and a thumhwheet switch in Dider to provide comparison and pieset capdutity. With this combination you con do the following

Count up of duwn at speeds to 33 MeqiHerta
2 Store previous coums during miw count
Preset to any number, count down (ol up) and generate a logic level when count of zelo is reached. Stack several
units and generate Ingic tevel for zony caunt oreater than ater than
4. Pieset to zelo, count up (or down) and gemerate a tomic level lor aryy numbiet greales or erqual to the number presel in the thumlowneel switch Stack several OCU's and generate a logic level showiny whethei number is greater than, equal to, or less than nurnivers auesel on switches. $\square 910 \mathrm{~K} \quad 74907447$ Countel $\$ 8.25$

$\$ 9.25$ | 910 LK | 7490.7475 .7447 Cusunter | $\begin{array}{r}\$ 9.25 \\ 911 \text { LK } \\ 741967475.7447 \text { Counler }\end{array}$ |
| :--- | :--- | :--- | $\begin{array}{lll}911 \mathrm{LK} & 741967475.7447 \text { Counter } & 51.25 \\ 912 \mathrm{~K} & 741327447 \text { Counter } & 59.25\end{array}$ $\begin{array}{ll}912 \mathrm{~K} & 741927447 \text { Counter } \\ 913 \mathrm{~K} & 74192.747574477485\end{array}$ Universal DCU

$\$ 14.50$
I.B.M. POWER SUPPLY REGULATOR PARTS!

like now assembily sululus Irom the I B.M. Companv
conidins the Iollowing: (6) conlwins the Isllowing (6)
150 Wall wansistons, (6) neat 150 Walt hansistons, (6) heat
simks. (6) $1 \Omega \mathrm{FW}$ resistors, siriks. 120 Amp circuit lieaker,
a $16-0 \mathrm{hm} 10$ Watl resistor, 50 Watt resisto, terminal stip, (2) 16 -pin P.C. Eatge connectous lor regular cards. An
$800 \mathrm{~m}) \mathrm{mlta}$. 15 V computer gode capacitor is also provided. All in a nice mounling
looks as it it could the a neat unit to make d lab-type power supply. Unit is sold as an assembly, or in parts. Quantity is limited.

St. WI. 20 Ibs	IBMPSRA				
3 fot $\$ 20.00$	IBMPSRA		$8101 \$ 52.00$	IBMMPSA	$\$ 20.00 / 3$
:---	:---	:---			
$1815 R A$	$\$ 52.00 / 8$				

Heat sinks capable of dissipating 150 watts ol powe
Price
Transistors, 2 N441 or 2 N442 ivise. TO 36 case
4 for $\$ 5.00$
Connectars, 2 fo: $\$ 1.50$
$\$ 1.00 \mathrm{ea}$
$\$ 1.00 \mathrm{ea}$ $\$ 1.00 \mathrm{ea}$
$\$ 1.50 \mathrm{ea}$
$\$ 1.50 \mathrm{ea}$
$\$ 5.00 / 4$
$\$ 1.50 / 2$

Lt LASERTUBE

Large manulacturer sells his

 over-stock tubs to us. allquarsnteed to be in perfect guaranteed to be in perfect laser tule (TEM.) on the mat a special lapered thare design. ket, only 8% lang. uses a special lapered thore design morror system with co-axial mounting of alt elements mainlain beam alignment and power stabilily under mechan icat stress and changes in temperature. SPECIFICATIONS red laser, 1 nW power, TEM., 632.8 mm wavelengith, 1.10 mm heam didmeter 0.85 mrad divergence, linear polarization sise $8.5 \times 1.75^{\circ}$ diameter. These can be useful lor alignmen systems, measurement systems, and for mummation, eic., in expupment such dis levels, transis, tanginy. in spection ins This is not a lov tulie bul a laser designed to meet righ indusity stantards tist price is over $\$ 200.00$ each. meet rigid $\begin{array}{ll}\text { Sh.Wi } 3 \text { liss. } \\ 2101 \\ 18180.00 & \text { CImWLT }\end{array} \$ 97.50$ $\begin{array}{llr}2 \text { 101 } \$ 180.00 & \text { CImWLT } & \$ 180.0012 \\ 10 \text { for } \$ 850.00 & \text { CimWLT } & \$ 850.00 / 10\end{array}$ 100 lor $\$ 7500$ C1mWLT $\$ 7500.00 / 100$ Portalle supply operates from 12 vdc inpul. Usetul for field
experiments with taser. Availatile only with purchase ol rube Price 525.00

Revolutionaryl, was the reaction of our custoners when they saw our latest \&it Measuring oniv $2 \%^{\prime \prime} \times 2 y^{\prime \prime \prime} \times 23 / 8^{\prime \prime}$, and aceurate to 10 seconds a month, this chronometer promises arplanes
Firs into a standart 2% instrument pattel cutoul. The displays are brisht L.E.D. displays inat should last a lifetime Selting controls ate recessed and operate trom a pointer ohject such as a pencil pornt or paper clip. in order to keep
non authorized hands olf The clock shoutd only have to be reset at very great intervals, or in the event of power loss lie peplaciny Imittery in carl. The clock is wired so that the timing circuits are atways running, but the displays are only III when the ignition is on, resulifing in negliyible power drain. The low price is only possible because of a new one chip MOS clock. Operates from 10.1A Volts D.C An accessory unit which mounts on the hack alapis me unit 59 20-28 volis tor $\mathbf{~ w i n ~ e n g o n e ~ u i r c r a t t ~ a n d ~ l a r g e r ~ b o a t s ~ u s i n g ~} 24$ Volts ignition. Know how disyuster vou are with the usual cas navigation or wist to mave a fine chsongmeler that wall give

you a liletime ol superialy accurate time
\square Quar la Ch, oncimerer. Kin Form $\$ 69.50$ \square
24 Volt Aronomerter, Wired $\$ 10.00$

New.Style AUTO/BOAT/PL ANE

 OUARTZ CRYSTAL CHRONOMETERAs you can see from the illustration, we have provirbed a new enclosure lor our most popular kit. the ARIES Moitel AR-720K Ouar $1 /$ Crystat Chionometer. This enclosure can be the dishboard, over the center drive Iunnet, or under the food above the windshield.
R Aulomotive style quarte crystal chronometer . $\$ 75.00$ Same assembled, calibrated, tested $\$ 99.00$

Bend in an order and bet un aur special custom customer
CATALOG: Check reader's card or write
ALL ITEMS (WHERE WEIGHT IS NOT SPECIFIED)
PosTAGEPAID IN THE U.S.A.
2 CHARGES WELCOME!
$\begin{array}{llllllllll}\text { Phone in charges to } & 617 & 531.5774 & \text { of } & 617 & 532.2323 .\end{array}$
Bunk Americar
B.\&F. ENTERPRISES Mass. 01960

Phone (617) 531.5774
119 Foster Street
Peabody. Mass. 01960

$$
\begin{aligned}
& 1 \text { Gun-unit } \\
& 2 \text { Gun-units at } \$ 14.50 \text { ea.. lotal } \$ 29.00 \\
& \mathbf{3} \text { Gun-units at } \$ 14 \text { ea., total } \$ 42.00 \\
& 6 \text { Gun-units at } \$ 12 \text { ea., total } \$ 72.00 \\
& \text { Extra Bgxes of Ten Tear-Gas Shells } \$ 2 \text { per box. } \\
& \text { Extra Boxes of Blanks, } \$ 1.25 \text { per box } \\
& \text { Holsters } \$ 2 \text { each. We prepay shipping cosis on } \\
& \text { alt of these items-when shipped with gun units. } \\
& \text { BREVETTATA } \\
& \text { Dept. RE-73. } 310 \text { W. 9th St., Kansas Ctiy. Mo. } 64105
\end{aligned}
$$

Technical Excellence in Electronics.

(L). VIIPARASOOTEHNICAL INSITIUTE Oept. C. Yellowstone Trall. Valparaiso. Indiana 46383

ADVERTISING INDEX
RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

READER SERVICE CARD NO.
PAGE
62
Hell \& Howell Schools B \& k Disision of Dynascan Corp
Browk: Radio \& TV Corn

Crown International
Delta Electronics
Digital Concepis
23
73
Digital Concep
.80
78 Edmund Scientific C
FJCO. Electronic Instrument Co.
VIC Electronic Measurments Corp
1 i Insiruments Inc
Fordham Radio Supply Co
Fluke.
75
90
70 GC Electronics
69 Grantham Schon of Electronic: 83
Cill- Sylvaniat Electronic
Components Syluania Electronic Compmenents
Cover-11
is
100 Healh Co.8.4.87
ICS Schow of Elecironic:
Indiana Home Study Instilute
Internattional Crystal lifg. Co.
Int
Internatlional Crystal \Ifs. Co............... 12
23 Jemen laol \& Alloys 74
14 Iafayette Electronica
30 Leader Instruments Corr
Lecirotech. Inc.
Vacro-Instrumentation Telemetry
Syatems. Inc
16 Vational Camera Co
National Technical schools
Olson Electronics
39 PNIA Elecironics
25 Perma-l'ower
PIS Electronics. Inc
Quietrole Co
Radies Shack
Test rectronic Components
Kectitier Cimponents Curp
Rye Industrie

Tah Berk
riad-ITrad Dimrihutor
Tri-star Corp
Tuner Service Corp
TV Jech Aids
Universal Tuner Iahs Mig.. Ins
M. Weinchenher Elec

MARKET CENTER
Hil Kewarch Comp
Bathy lan Elictronics
Barlia
Barla
B \& F Enterprises
Breveliata
Command Productions
Cornell I lectronics
Dig-hes
Grecurs
Gregory Flectronics Corn
International Flectronics Unlimited Lakevide Intustinev
Alenhna F゙lectruni
Mennat Flectronics. John Jr
Photulume
Solid Siate Sales
Surplus Cente
Vapariso Technical Insritute
leats Appliance [)olly Sales

LIVE IN THE WORLD OF TOMORROW...TODAY!

A BETTER LIFE STABTS HERE

3-CHANNEL COLOR ORGAN KIT

130 EXPERIMENTS IN OPTICS \qquad

and photography! Optixm Experiments Kit is a complete optical \& photography lab for 130 exciting experiments. Lets you recreate the periscope, telescope. microscope, kaleidoscope! ... Build a 35 mm reflex camera with interchange able lens system! Make, develop pho tographic film! Enjoy the fun and fas cination of having your own optics lab. Fully illustrated 112.pg. manual, $81 / 2$ "x11", clearly explains usage of this stimulating kit's 114 precision engineered components.
Stock No. 71,646EH \$22.50 Ppd.
(And our FREE CATALOG is packed with exciting and unusual ecological \& physical science items-plus 4.500 finds for fun, study or profit . . . for every member of the family.)

ELECTRONIC SLIDE RULE: $\$ 99.95$
Price breakthrough! Texas Instrument cal culator easily does classic slide rule wh. w/split-sec. accuracy. 8 -digit \#s, 2 -digit exponents, minus signs, overflows show in red. Besides 4 std. functions, does $s q$ roots. squares, reciprocals, auto. conversion to scientific notation, mixed calc. Max. \& min. \#s. Great for tchrs, students on the go (9 oz). Incls long-life Ni-Cad rechargable batts. \& AC converter-charger.
(A) No. $78,011 \mathrm{EH}\left(6-1 / 4 \times 3 \times 1-1 / 4^{\prime \prime}\right)$. $\$ 99.95$ Ppd.
(B) No. 78,014EH (ENGR's DESK MOD.) \$179.95 Ppd.

TERRIFIC BUY IN HE-NE LASERS
Low price on 0.5 mW Laser (random mode): 0.9 mm beam dia. (at 10 M . 16 mm) belies its quality. New cold aluminum cathode tube for more tube life under normal cond) Ready to plug in, furn on. Starts instantly Safe, easy for holography interfer ometry, alignment. Metal case, 2.8×3.8
small beam divergence $\times 10^{\prime \prime}$. 110 v AC, 633 nm case, 2.8×3.8 slock No. 79,020EH tock Mo 79.7 mW (SINGLE TEM MOMODE), 0.8 mm BEAM DIA 88.50 PDd $\$ 99.50$ Ppd.
 bits. stars, phases of REFLECTOR
venus, plants close up. 60
180 power. New Improved ameter $1 / 10$ primary mirror $3^{\prime \prime}$ dilated cell. Equatorial mount with vention both axes Equipped with 60 x eyepick and mounted Barlow lens. $3 x$ finder telecope. hardwood tip USE YOUR TELESCOPE HART". "HOW TO USE YOUR TELESCOPE" Stock No. 85,050EH OELUXE *" REFLECTOR DELUXE RELECTOR TELESCOPE
562.50 Ppd.
$41 / 4$ NO RELECTOR TEIESCOPE Stock No. $85,105 \mathrm{EH}$ RECOPE (45x to $270 \times$ 41/4" REFLECTOR TELESCOPE WITH CLOCK DRIVE STOCK NO. 85,107EH $\$ 145.00$ FOB 6" REFLECTOR TELESCOPE Stock NO. $85,187 \mathrm{EH}$. 6" REFLECTOR W/(ELECTRIC) CLOCK DRIVE NO. 85,086EH …....... $\$ 259.50$ FDB

MAIL COUPON FOR GIANT FREE gatalogb

180 PAGES • MORE THAN 4,500 UNUSUAL BARGAINS!

[^4]100

Southwest Technical Products Corporation
 219 W. RHAPSOOY
 SAN ANTONIO. TEXAS 78216
 PHONE 512 DI 4.3140

January 1974

Dear Radio-Electronics Reader,

As we all start another year, it looks like this one will go down as the year of the shortage for those of us in electronic manufacturing. Delivery on more and more parts is getting into the "order now for delivery next Christmas" categery. Capacitors, transistors, diodes, wire, even resistors are three months and more for some types. Don't know where it will all end, but it sure makes it spooky when you need to order parts for a new product before it is designed in order to get them when they will be needed for shipment.

Have you ever noticed how things seem to go around in large circles and finally get back to the same place they started from It's interesting how amplifier design has gone from the old triode class A Williamson of the late fortys and early fifties, to ultralinear and finally to the early transformer coupled transistor circuits. High fidelity amplifiers used to be designed to be as clean and linear as possible without feedback, then enough feedback was added to give the bandwidth and flat response that was desired. As power transistors became available that could handle the current to directly drive a speaker, it became possible to eliminate the output transformer and make a circuit that was considerably wider in bandwidth on both the low and high frequency ends. The only problem was that the power transistors only came in one polarity and you had to use a so called quasicomplementary output circuit. Now this beast is just inherently unlinear. No matter what kind of clever things you do to it, it just isn't going to make a pretty waveform without lots of feedback. As a result of this situation we got the-"build it crooked and then bend it back straight with tons of feedback"; school of amplifier design. The final result was amplifiers that were very clean-they should be, some had open loop gains of 100 to 125 dB . Since you only need, or want, 25 or so dB of gain in a power amplifier you have up to 100 dB of negative feedback to clean things up and you get a really superior amplifier-right? wrong!! What you get is an amplifier with miserable transient response that has a very inferior slew rate. The phase compensation needed to keep an amplifier with this much gain stable requires a rolloff beginning well down in the audio range for the dominant pole. This creates the " $741^{\prime \prime}$ problem made famous by the op-amp of the same name. You have a very limited ability to handle large amplitude signals with a fast rise time. Result-poor transient response and distortion that is heard, but impossible to measure with normal steady state harmonic and IM analyzers. It measures great, but your ears insist that something is not quite right.

Our solution to this dilemma was to return to the basic idea of building a linear circuit and then adding enough feedback to get the desired results. Our amplifiers have a completely complementary circuit from the input all the way through to the output. They have less than 70 dB of open loop gain. The result of this return to original principles is distortion lower than you can easily measure, bandwidth (1.0 db down points) of 10 Hz to 500 KHz and beautiful sound. Due to the reasonable gain, there are no phase margin, slew rate, or transient problems.

We would be happy to send you a catalog listing all of our kits, and a reprint of the "Tiger . 01 " article if you are interested. This kit comes complete with a bronze anodized chassis and perferated metal cover, front panel output meter and highest quality components. The instructions include pictorial diagrams and step-bystep wiring. You will have to accept the fact that to get the best you are going to have to pay a little less. We hope that this will not cause you any hangups.

Sincerely,

SOUTHWEST TECHNICAL PRODUCTS CORPORATION
DEPT. RE-L
219 W. RHAPSODY, SAN ANTONIO, TEXAS 78216

The Timesaver!

Latest, all solid state version of the sensational signal circuit analyzing timesaver originated by Castle.
Invaluable for locating the break in the tuner and i.f. signal chain or analyzing age system defects in tube TV receivers . . . essential for speedy location of signal circuit defects in modular IC, solid state and hybrid TV receivers.

A NEW APPROACH to agc system analyzing!

Permits signal injectian after the agc controlled stages to simplify testing for age defects.

- Works with ony 40 MHz receiver
- High level, low impedance output furnishes signal usoble of input of final i.f. stage.
- Special output circuit works equally well into first i.f. input of lore model, link coupled systems and alder, low "C" bandpass coupled systems.
" Antenno input ond i.f. autput electrically isolated; no "hat" chassis hazords.
- Na need to disconnect supply leads from suspected runer being tested. Substitutes the VHF funer and tests the UHF funer.
- Tunes all 12 VHF channels, has preset (memory) fine luning on all chonnels.
- Higher overall gain thon previous models with wide range gain reduction control of 60 db
- Completely self contained and banery operated, uses populor batteries avoilable everywhere. Simple battery replacement; battery campartment in rear of custam molded case.
- Reduced current consumprion extends bottery life to as much os double that of previous models. Bright IED indicator worns when unit is ON.
- Use on the bench or in the hame
- Comes complete with extension cables, bareries and instructions
color or black and white . . solid state, fube or hybrid.

TV TUNER SUBBER ${ }_{\text {tu }}$ Mark IV net $\$ 45.95$

Specificertions

300 othe कh mo NH . 30 mecrovoke. 40 MHz TV 1.1.: Dendwien of MHz.

 omplater pounts two Mhe N subbere to bo cancaded. Hereet (mesory) fine rumim Munctonk cheoviler

Contact your distributor

CASTLETVTUNER SERVICE, INC.
5715 N. Western Ave., Chicago, Illinois 60645 - Phone: (312) - 561.6354
In Canada: Len Finkler Co., Ontario

[^0]: John Smet. ON5EX
 Acacıalaan 27
 De Pinte, Belgium

[^1]: * Indicates a dual transistor for high-speed switching, diff amplifier etc. Likely to be a matched pair. Use two of the type specified,解 when necessary, on a curve tracer or lab-type transistor checker.

[^2]: At ？＇，Bill It We Mo has mere freedome more
 securty and eefe mere ropes shan gurs sutere

[^3]: EDLIE ELECTRONICS, INC. 2700-B HEMPSTEAO TPKE., LEVITTOWN. N. Y. 11756

[^4]: Completely new' 74 Catalog. Packed with huge selec tion of telescopes, microscopes, binoculars, magnets, magnifiers, prisms, photo components, ecology and Unique Lighting items, parts, kits, accessorles - many hard-to-get surplus bargains. 100 's of charts, illus trations. For hobbyists, experimenters, schools, inEDMUND SCIENTIFIC CO. 300 Edscorp Building. Barrington, N. J. 08007 Please rush Free Giant Catalor "EH
 1
 Name
 Addres
 \qquad
 State

